地理要素对地表温度降尺度算法的多维响应Multi-dimensional response of geographical factors to land surface temperature downscaling algorithms
夏晓圣,王军红,程先富
摘要(Abstract):
针对如何克服不同传感器地表温度的时空分辨率矛盾的问题,该文利用随机森林(RF)算法、BP神经网络(BP)算法和多元回归(MLR)算法,直接将原始1km分辨率的MODIS LST降尺度至250m分辨率,并评估地理要素对不同降尺度算法的多维响应。结果表明:①在不同海拔、坡度、坡向和土地利用类型中,RF算法的降尺度效果均为最佳;②在降尺度模型中考虑经纬度、地形因子等地理要素能显著提升降尺度效果;③降尺度效果随海拔升高先增后减,随坡度增加先增后降,从不同坡向看,降尺度效果分异明显,从不同土地利用类型看,林地、草地的降尺度精度最高,耕地次之,水域和建筑用地降尺度精度最低。
关键词(KeyWords): 地表温度;降尺度;地理要素;多维响应;MODIS;随机森林
基金项目(Foundation): 国家自然科学基金项目(41271516);; 安徽师范大学研究生科研创新与实践项目(2018kycx051)
作者(Author): 夏晓圣,王军红,程先富
DOI: 10.16251/j.cnki.1009-2307.2019.12.020
参考文献(References):
- [1] GUZINSKI R,NIETO H,JENSEN R,et al.Remotely sensed land-surface energy fluxes at sub-field scale in heterogeneous agricultural landscape and coniferous plantation[J].Biogeosciences,2014,11(18):5021-5046.
- [2] LI Y,HUANG C,HOU J,et al.Mapping daily evapotranspiration based on spatiotemporal fusion of ASTER and MODIS images over irrigated agricultural areas in the Heihe River Basin,Northwest China[J].Agricultural&Forest Meteorology,2017,244:82-97.
- [3] YAO R,WANG L,HUANG X,et al.Temporal trends of surface urban heat islands and associated determinants in major Chinese cities[J].Science of the Total Environment,2017,609:742-754.
- [4] WENG Q.Thermal infrared remote sensing for urban climate and environmental studies:methods,applications,and trends[J].ISPRS Journal of Photogrammetry&Remote Sensing,2009,64(4):335-344.
- [5] YANG G,PU R,ZHAO C,et al.Estimation of subpixel land surface temperature using an endmember index based technique:a case examination on ASTER and MODIS temperature products over a heterogeneous area[J].Remote Sensing of Environment,2011,115(5):1202-1219.
- [6] KUSTAS W P,NORMAN J M,ANDERSON M C,et al.Estimating subpixel surface temperatures and energy fluxes from the vegetation index-radiometric temperature relationship[J].Remote Sensing of Environment,2003,85(4):429-440.
- [7] AGAM N,KUSTAS W P,ANDERSON M C,et al.A vegetation index based technique for spatial sharpening of thermal imagery[J]. Remote Sensing of Environment,2007,107(4):545-558.
- [8]李小军,辛晓洲,江涛,等.卫星遥感地表温度降尺度的光谱归一化指数法[J].测绘学报,2017,46(3):353-361.(LI Xiaojun,XIN Xiaozhou,JIANG Tao,et al.Spatial downscaling research of satellite land surface temperature based on spectral normalization index[J].Acta Geodaetica et Cartographica Sinica,2017,46(3):353-361.)
- [9] WENG Q,FU P,GAO F.Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data[J].Remote Sensing of Environment,2014,145(8):55-67.
- [10]王斐,覃志豪,宋彩英.利用Landsat TM影像进行地表温度像元分解[J].武汉大学学报(信息科学版),2017,42(1):116-122.(WANG Fei,QIN Zhihao,SONG Caiying.An efficient approach for pixel decomposition of land surface temperature from Landsat TM data[J].Geomatics and Information Science of Wuhan University,2017,42(1):116-122.)
- [11]李艳,侯金亮,黄春林.基于Copula函数的地表温度空间降尺度研究[J].遥感技术与应用,2017,32(5):818-824.(LI Yan,HOU Jinliang,HUANG Chunlin.Spatial downscaling land surface temperature based on copula[J].Remote Sensing Technology and Application,2017,32(5):818-824.)
- [12]ALEXAKIS D D,TSANIS I K.Comparison of multiple linear regression and artificial neural network models for downscaling TRMM precipitation products using MODIS data[J].Environmental Earth Sciences,2016,75(14):1-13.
- [13]华俊玮,祝善友,张桂欣.基于随机森林算法的地表温度降尺度研究[J].国土资源遥感,2018,30(1):78-86.(HUA Junwei,ZHU Shanyou,ZHANG Guixin.Downscaling land surface temperature based on random forest algorithm[J].Remote Sensing for Land and Resources,2018,30(1):78-86.)
- [14]赵伟,李爱农,张正健,等.基于Landsat8热红外遥感数据的山地地表温度地形效应研究[J].遥感技术与应用,2016,31(1):63-73.(ZHAO Wei,LI Ainong,ZHANG Zhengjian,et al.A study on land surface temperature terrain effect over mountainous area based on Landsat 8thermal infrared data[J].Remote Sensing Technology and Application,2016,31(1):63-73.)
- [15]HUTENGS C,VOHLAND M.Downscaling land surface temperatures at regional scales with random forest regression[J].Remote Sensing of Environment,2016,178:127-141.
- [16]QIN Z,KARNIELI A,BERLINER P.A mono-window algorithm for retrieving land surface temperature from Landsat TM data and it’s application to the IsraelEgypt border region[J].International Journal of Remote Sensing,2001,22(18):3719-3746.
- [17]宋挺,段峥,刘军志,等.Landsat 8数据地表温度反演算法对比[J].遥感学报,2015,19(3):451-464.(SONG Ting,DUAN Zheng,LIU Junzhi,et al.Comparison of four algorithms to retrieve land surface temperature using Landsat 8 satellite[J].Journal of Remote Sensing,2015,19(3):451-464.)
- [18]蒋大林,匡鸿海,曹晓峰,等.基于Landsat8的地表温度反演算法研究:以滇池流域为例[J].遥感技术与应用,2015,30(3):448-454.(JIANG Dalin,KUANG Honghai,CAO Xiaofeng,et al.Study of land surface temperature retrieval based on Landsat 8-with the sample of Dianchi Lake Basin[J].Remote Sensing Technology and Application,2015,30(3):448-454.)
- [19]BREIMAN L.Random forests[J].Machine Learning,2001,45(1):5-32.
- [20]LI X,GUO Z,ZHU Y,et al.Artificial neural network classification of wetland integrating GIS data:a case study of Dongtan wetland in Chongming,Shanghai[J].Journal of East China Normal University,2010,32(4):26-34.
- [21]MUKHERJEE S,JOSHI P K,GARG R D.A comparison of different regression models for downscaling Landsat and MODIS land surface temperature images over heterogeneous landscape[J].Advances in Space Research,2014,54(4):655-669.