外方位元素解算的抗差总体最小二乘算法Solution for exterior orientation elements based on robust TLS estimation
陶叶青,杨娟,周晓钟,蔡安宁
摘要(Abstract):
针对非线性共线方程作为一种高斯-赫尔墨特模型,应用传统最小二乘算法求解外方位元素无法顾及模型系数矩阵中含有随机误差的问题,该文提出应用总体最小二乘准则求解外方位元素的方法。通过算例验证算法的可行性,结果表明应用建立的算法求解外方位元素,参数估值的精度优于传统最小二乘算法。在对非线性共线方程进行线性化的基础上,为减小观测值中含有的粗差对外方位元素求解的影响,结合抗差估计,建立外方位元素解算的迭代算法。
关键词(KeyWords): 外方位元素;总体最小二乘;抗差估计;最小二乘
基金项目(Foundation): 国家自然科学基金项目(41601501);; 江苏省社会科学基金项目(17EYB006);; 江苏省高校自然科学基金项目(16KJD420001);; 江苏省住房和城乡建设厅科技计划项目(2017ZD259)
作者(Author): 陶叶青,杨娟,周晓钟,蔡安宁
DOI: 10.16251/j.cnki.1009-2307.2018.11.006
参考文献(References):
- [1] ADCOCK R J.Note on the method of least squares[J].Analyst,1877,4:183-184.
- [2] GOLUB H G,VANLOAN F C.An analysis of the total least squares problem[J].SIAM Journal on Numerical Analysis,1980,17(6):883-893.
- [3] SCHAFFRIN B,WIESER A.On weighted total least squares adjustment for linear regression[J].Journal of Geodesy,2008,82(7):415-421.
- [4] SHEN Yunzhong,LI Bofeng,CHEN Yi.An iterative solution of weighted total least-squares adjustment[J].Journal of Geodesy,2011,85(4):229-238.
- [5]葛旭明,伍吉仓.病态总体最小二乘问题的广义正则化[J].测绘学报,2012,41(3):372-377.(GE Xuming,WU Jicang.Generalized regularization to Ill-posed total least squares problem[J].Acta Geodaetica et Cartographica Sinica,2012,41(3):372-377.)
- [6]陶叶青,张生,杨娟.顾及大地高误差的空间三维坐标系统转换[J].大地测量与地球动力学,2013,33(4):96-99.(TAO Yeqing,ZHANG Sheng,YANG Juan.3D space coordinate system transformation considering geodetic elevation error[J].Journal of geodesy and geodenamics,2013,33(4):96-99.)
- [7] MAHBOUB V.On weighted total least-squares for geodetic transformation[J].Journal of Geodesy,2012,86(5):359-367.
- [8]陈义,陆珏,郑波.总体最小二乘方法在空间后方交会中的应用[J].武汉大学学报(信息科学版),2008,33(12):1271-1274.(CHEN Yi,LU Jue,ZHENG Bo.Application of total least squares to space resection[J].Geomatics and information science of Wuhan university,2008,33(12):1271-1274.)
- [9] MAHBOUB V,AMIRI-SIMKOOEI A R,SHARIFI M A.Iteratively reweighted total least squares:a robust estimation in error-in-variables models[J].Survey Review,2013,45(329):92-99.
- [10]AMIRI-SIMKOOEI A R.Application of least squares variance component estimation to errors-in-variables models[J].Journal of Geodesy,2013,87(10):935-944.
- [11]LU J,CHEN Y,LI B F,et al.Robust total least squares with reweighting iteration for three-dimensional similarity transformation[J].Survey Review,2014,46(334):28-36.
- [12]陶叶青,高井祥,姚一飞.基于中位数法的抗差总体最小二乘估计[J].测绘学报,2015,44(3):297-301.(TAO Yeqing,GAO Jingxiang,YAO Yifei.Solution for robust total least squares estimation based on median method[J].Acta Geodaetica et Cartographica Sinica,2015,44(3):297-301.)
- [13]赵俊,归庆明.部分变量误差模型的整体抗差最小二乘估计[J].测绘学报,2016,45(5):552-559.(ZHAO Jun,GUI Qingming.Total robustified least squares estimation in partial errors-in-variables model[J].Acta Geodaetica et Cartographica Sinica,2016,45(5):552-559.)
- [14]NEITZEL F. Generalization of total least-squares on example of unweighted and weighted 2Dsimilarity transformation[J].Journal of Geodesy,2010,84(12):751-762.
- [15]WOLF P R,GHILANI C D.Adjustment computations:statistics and least squares in surveying and GIS[M].New York:Wiley-interscience Publication,1997.