重复场景影像特征匹配鲁棒策略的比较与评价Comparison and evaluation of robust feature matcher for images with repetitive structures
陈瑞波,刘润东,梅树红,潘婵玲
摘要(Abstract):
针对SfM三维重建中重复场景易引起不存在影像关联及错误相对定向的研究难点,该文研究多种影像特征匹配的鲁棒策略,如RANSAC、KVLD、GAM、GMS,并提出一套评价方案以量化分析其对重复场景影像SfM重建的影响。首先选择不同重复场景比例的影像数据,并分为宽基线和窄基线两类;其次设计了相对定向正确率及影像关联正确度2个评价指标;最后量化分析重复场景影像特征匹配及其SfM重建的影响。实验表明,该文设计的评价方案能量化出各特征匹配鲁棒策略对重复场景影像SfM重建的影响。
关键词(KeyWords): 重复场景影像;SfM;鲁棒特征匹配;影像关联;相对定向
基金项目(Foundation): 广西创新驱动发展专项(桂科AA18118038);; 广西重点研发计划项目(2017AB54078)
作者(Author): 陈瑞波,刘润东,梅树红,潘婵玲
DOI: 10.16251/j.cnki.1009-2307.2020.04.017
参考文献(References):
- [1] LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
- [2] NISTER D.An efficient solution to the five-point relative pose problem[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(6):756-770.
- [3] SUR F,NOURY N,BERGER M O.Image point correspondences and repeated patterns[R/OL].2011[2019-04-15].https://hal.inria.fr/inria-00609998/document.
- [4] SHAH R,SRIVASTAVA V,NARAYANAN P J.Geometry-aware feature matching for structure from motion applications[C]//2015 IEEE Winter Conference on Applications of Computer Vision.Piscataway:IEEE,2015:278-285.
- [5] LIN W Y,LIU S,JIANG N,et al.Repmatch:robust feature matching and pose for reconstructing modern cities[C]//European Conference on Computer Vision.Cham:Springer,2016:562-579.
- [6] STRECHA C,VON HANSEN W,VAN GOOL L,et al.On benchmarking camera calibration and multi-view stereo for high resolution imagery[C]//2008 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2008:1-8.
- [7] ZACH C,IRSCHARA A,BISCHOF H.What can missing correspondences tell us about 3D structure and motion?[C]//2008 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2008:1-8.
- [8] ROBERTS R,SINHA S N,SZELISKI R,et al.Structure from motion for scenes with large duplicate structures[C]//CVPR 2011.Piscataway:IEEE,2011:3137-3144.
- [9] ZACH C.Disambiguating Visual Relations Using Loop Constraints[C]//Computer Vision & Pattern Recognition.Piscataway:IEEE,2010.
- [10] HEINLY J,DUNN E,FRAHM J M.Correcting for duplicate scene structure in sparse 3D reconstruction[C]//European Conference on Computer Vision (ECCV).Cham:Springer,2014:780-795.
- [11] WILSON K,SNAVELY N.Network Principles for SfM:disambiguating repeated structures with local context[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision.Washington:IEEE Computer Society,2013:513-520.
- [12] LIU Z,MARLET R.Virtual line descriptor and semi-local matching method for reliable feature correspondence[C]//British Machine Vision Conference.[S.l.]:[s.n.],2012.
- [13] COLLINS T,MESEJO P,BARTOLI A.An analysis of errors in graph-based keypoint matching and proposed solutions[C]//European Conference on Computer Vision.Cham:Springer,2014:138-153.
- [14] BIAN J W,LIN W Y,MATSUSHITA Y,et al.GMS:grid-based motion statistics for fast,ultra-robust feature correspondence[C/OL]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:4181-4190[2019-04-15].http://openaccess.thecvf.com/content_cvpr_2017/papers/Bian_GMS_Grid-based_Motion_CVPR_2017_paper.pdf.
- [15] YUILLE A L,GRZYWACZ N M.The motion coherence theory[C]//International Conference on Computer Vision.Piscataway:IEEE,1988.
- [16] MIKOLAJCZYK K,TUYTELAARS T,SCHMID C,et al.A comparison of affine region detectors[J].International Journal of Computer Vision,2005,65(1/2):43-72.
- [17] KANEVA B,TORRALBA A,FREEMAN W T.Evaluation of image features using a photorealistic virtual world[C]//IEEE International Conference on Computer Vision.Piscataway:IEEE,2011.
- [18] SCHONBERGER J L,FRAHM J M.Structure-from-motion revisited[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2016:4104-4113.