一种改进的最小独立闭合环搜索算法An improved minimum independent closed loop search algorithm
黄鹤,薛艺舟,罗德安
摘要(Abstract):
针对在实际应用中,尤其是面对复杂大型连通图的拓扑关系梳理运算中,现行的最小独立闭合环搜索算法虽然成熟稳定,但在现有的算法框架内难以实现运算效率的数量级提升的问题。该文结合具体问题,即对华北地区路网进行最小闭合环搜索以实现质量检查与控制,以及在其他数据处理应用的实践中发现现行的最小独立闭合环搜索算法无法满足特定运算周期的需求,且容易产生连续计算带来的内存溢出和运算宕机问题。基于此,在树枝-余枝算法基础上进行算法优化,提高算法的鲁棒性和运算效率,以提供一种复杂大型的拓扑学问题最小独立闭合环的检索解决方法。
关键词(KeyWords): 连通图;最小独立闭合环;生成树余树;聚类分割
基金项目(Foundation): 国家重点研发计划资助项目(2017YFB0503702)
作者(Author): 黄鹤,薛艺舟,罗德安
DOI: 10.16251/j.cnki.1009-2307.2020.08.001
参考文献(References):
- [1] 冯琰,张正禄,罗年学.最小独立闭合环与附合导线的自动生成算法[J].武汉测绘科技大学学报,1998,23(3):255-259.(FENG Yan,ZHANG Zhenglu,LUO Nianxue.Algorithms to produce least independent close loops and connecting traverses automatically[J].Journal of Wuhan Technical University of Surveying and Mapping,1998,23(3):255-259.)
- [2] 郭际明,王磊,罗年学,等.一种改进的测量控制网最小独立环搜索算法[J].武汉大学学报(信息科学版),2011,36(5):593-595.(GUO Jiming,WANG Lei,LUO Nianxue,et al.An improved least independent loops searching algorithm in corntrol network[J].Geomatics and Information Science of Wuhan University,2011,36(5):593-595.)
- [3] 姚宜斌,邱卫宁.测量平差问题中必要观测数的确定[J].测绘通报,2007,52(3):14-15,18.(YAO Yibin,QIU Weining.Determination of essential observations in survey adjustment[J].Bulletin of Surveying and Mapping,2007,52(3):14-15,18.)
- [4] 罗三明,黄曲红.控制网最小独立闭合环自动搜索算法研究[J].大地测量与地球动力学,2009,28(6):93-96,100.(LUO Sanming,HUANG Quhong.Research on auto-searching least closed loops in control network[J].Journal of Geodesy and Geodynamics,2009,28(6):93-96,100.)
- [5] WANG W,YANG J,MUNTZ R R.STING:a statistical information grid approach to spatial data mining[C]//The 23rd VLDB Conference.San Francisco:Morgan Kaufmann Publishers Inc,1997:186-195.
- [6] ANKERST M,BREUNIG M M,KRIEGEL H P,et al.OPTICS:ordering points to identify the clustering structure[C]//Proceedings of the 1999ACM SIGMOD International Conference on Management of Data.New York:ACM,1999:49-60.
- [7] ERTZ L,STEINBACH M,KUMAR V. Finding clusters of different sizes,shapes,and densities in noisy,high dimensional data[C]//Proceedings of the2003SIAM International Conference on Data Mining.[S.l.]:[s.n.],2003:47-58.
- [8] HAN J,PEI J,KAMBER M.Data mining:concepts and techniques[M].Amsterdam:Elsevier,2011.
- [9] RODRIGUEZ A,LAIO A.Clustering by fast search and find of density peaks[J].Science,2014,344(6191):1492-1496.
- [10]ZHU Y,TING K M,CARMAN M J.Density-ratio based clustering for discovering clusters with varying densities[J].Pattern Recognition,2016,60:983-997.
- [11]谢剑斌,胡俊,谭筠,等.视觉机器学习20讲[M].北京:清华大学出版社,2015:11-41.(XIE Jianbin,HU Jun,TAN Yun,et al.20lectures on visual machinelearning[M].Beijing:Tsinghua University Press,2015:11-41.)
- [12]MACQUEEN J.Some methods for classification and analysis of multivariate observations[C]//Proceedings of Berkeley Symposium on Mathematical Statistics&Probability.[S.l.]:[s.n.],1965.
- [13]VENKATESWARLU N B,RAJU P S V S K.Fast isodata clustering algorithms[J].Pattern Recognition,1992,25(3):335-342.
- [14]ARTHUR D,VASSILVITSKII S.K-means++:the advantages of careful seeding[C]//Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms.Philadelphia:Society for Industrial and Applied Mathematics,2007.
- [15]王鹏磊,刘长星,张建,等.基于改进的生成树和余树算法控制网最小独立闭合环搜索算法研究[J].大地测量与地球动力学,2014,33(1):113-117.(WANG Penglei,LIU Changxing,ZHANG Jian,et al.Study on least independent close loops of control network based on an improved spanning tree and cotree algorithm[J].Journal of Geodesy and Geodynamics,2014,33(1):113-117.)