对偶四元数绝对定向迭代解法An absolute orientaion iterative solution method based on dual quaternion
柴双武,杨晓琴,郭旭炜
摘要(Abstract):
针对传统的欧拉角表述的绝对定向迭代解法存在的局限性问题,该文将对偶四元数应用到解析绝对定向中,提出一种利用对偶四元数描述的绝对定向迭代解法。该方法根据最小二乘原理求出尺度因子;顾及到模型点坐标含有误差,将模型点坐标作为观测值,对绝对定向方程进行线性化;在对偶四元数单位性和正交性的限制条件下,进行间接平差,求解出七个绝对定向元素。试验结果表明:该解法正确可靠,能够适用于大倾角和大尺度,且与传统欧拉角迭代法相比,具有无须计算初值、线性化程度高、迭代次数少、能够避免繁琐的三角函数运算、解更加稳定等优势,且该方法在一定程度上丰富了绝对定向的解法。
关键词(KeyWords): 对偶四元数;绝对定向;迭代解法;附有限制条件间接平差模型;绝对定向元素
基金项目(Foundation): 国家自然科学基金项目(51504159);; 太原理工大学校基金项目(2014TD008)
作者(Author): 柴双武,杨晓琴,郭旭炜
DOI: 10.16251/j.cnki.1009-2307.2020.05.013
参考文献(References):
- [1] 王佩军,徐亚明.摄影测量学[M].武汉:武汉大学出版社,2005:77-79.(WANG Peijun,XU Yaming.Photogrammetry [M].Wuhan:Wuhan University Press,2005:77-79.)
- [2] 龚辉,姜挺,江刚武.一种利用正交矩阵反问题进行绝对定向的快速算法[J].测绘科学,2008,33(4):32-34.(GONG Hui,JIANG Ting,JIANG Gangwu.A fast algorithm of absolute orientation using inverse problem of orthogonal matrices [J].Science of Surveying and Mapping,2008,33(4):32-34.)
- [3] 曾卓乔.一种不测定初始值的近景摄影测量微机程序[J].测绘学报,1990,19(4):298-306,297.(ZENG Zhuoqiao.A PC-based program of close-range photogrammetry without approximate values [J].Acta Geodaetica et Cartographica Sinica,1990,19(4):298-306,297.)
- [4] 张永军,胡丙华,张剑清.大旋角影像的绝对定向方法研究[J].武汉大学学报(信息科学版),2010,35(4):427-431.(ZHANG Yongjun,HU Binghua,ZHANG Jianqing.Absolute orientation of large rotation angle images[J].Geomatics and Information Science of Wuhan University,2010,35(4):427-431.)
- [5] 赵志全.基于正交Procrustes分析的绝对定向闭合解法[J].勘察科学技术,2010(3):18-20.(ZHAO Zhiquan.Absolute orientation closure solution based on orthogonal procrustes analysis [J].Site Investigation Science and Technology,2010(3):18-20.)
- [6] 郑南山,杨化超,张书毕,等.一种适合于数字近景影像的绝对定向方法[J].测绘科学,2008(5):111-112,115.(ZHANG Nanshan,YANG Huachao,ZHANG Shubi,et al.A method of absolute orientation fit for digital close-range images[J].Science of Surveying and Mapping,2008(5):111-112,115.)
- [7] 高宁,赵星涛,纪磊,等.单位四元数和物方几何约束的绝对定向[J].测绘科学,2018,43(9):22-27.(GAO Ning,ZHAO Xingtao,JI Lei,et al.An absolute orientation method for unit quaternion and object geometric constraints [J].Science of Surveying and Mapping,2018,43(9):22-27.)
- [8] 姬亭,盛庆红,王惠南,等.对偶四元数单片空间后方交会算法[J].中国图象图形学报,2012,17(4):494-503.(JI Ting,SHENG Qinghong,WANG Huinan,et al.Dual quaternion of space resection with single-image[J].Journal of Image and Graphics,2012,17(4):494-503.)
- [9] 马涛峰,卢小平,禄丰年.基于对偶四元数的三维空间坐标转换直接解法[J].大地测量与地球动力学,2017,37(12):1276-1280.(MA Taofeng,LU Xiaoping,LU Fengnian.A direct solution of three-dimensional space coordinate transformation based on dual quaternion [J].Journal of Geodesy and Geodynamics,2017,37 (12):1276-1280.)
- [10] 孔祥丽.基于对偶四元数描述的LiDAR点云解析配准算法[J].测绘地理信息,2017,42(6):46-49.(KONG Xiangli.LiDAR point cloud registration algorithm based on dual quaternion [J].Journal of Geomatics,2017,42(6):46-49.)
- [11] 赵双明,郭秋燕,罗研,等.基于四元数的三维空间相似变换解算[J].武汉大学学报(信息科学版),2009,34(10):92-99.(ZHAO Shuangming,GUO Qiuyan,LUO Yan,et al.Quaternion-Based 3D similarity transformation algorithm[J].Geomatics and Information Science of Wuhan University,2009,34(10):92-99.)
- [12] 杜兰,张捍卫,周庆勇,等.坐标转换参数之间的相关性解析[J].大地测量与地球动力学,2011,31(1):59-62.(DU Lan,ZHANG Hanwei,ZHOU Qingyong,et al.Analysis of correlation of coordinate transformation parameters[J].Journal of Geodesy and Geodynamics,2011,31(1):59-62.)
- [13] 武汉大学测绘学院测量平差学科组.误差理论与测量平差基础[M].武汉:武汉大学出版社,2014:171-172.(Discipline Group of Surveying Adjustment,School of Surveying and Mapping,Wuhan University.Error theory and the basis of surveying adjustment [M].Wuhan:Wuhan University Press,2014:171-172.)
- [14] 韩梦泽,李克昭,基于罗德里格矩阵的空间坐标转换[J].测绘工程,2016,25(4):25-27.(HAN Mengze,LI Kezhao.Spatial coordinate transformation based on Rodrigues matrix[J].Engineering of Surveying and Mapping,2016,25(4):25-27.)
- [15] 龚辉,江刚武,姜挺.基于单位四元数的绝对定向直接解法[J].测绘通报,2007(9):10-13,16.(GONG Hui,JIANG Gangwu,JIANG Ting.Direct solution of absolute orientation based on unit quaternion [J].Bulletin of Surveying and Mapping,2007(9):10-13,16.)
- [16] 龚辉,江刚武,姜挺,等.基于对偶四元数的绝对定向直接解法[J].测绘科学技术学报,2009,26(6):434-438.(GONG Hui,JIANG Gangwu,JIANG Ting,et al.Close-form solution of absolute orientation based on dual quaternion[J].Journal of Geomatics Science and Technology,2009,26 (6):434-438.)