位置数据中的城市行业空间特征挖掘Spatial feature discovery of urban industry based on location data
郭名静,边少锋,单潮龙,熊鑫,曾立庆
摘要(Abstract):
针对城市空间特征分析问题,该文以武汉市中心城区为研究对象,对多维位置数据进行数据挖掘,获得城市行业空间分布特征模式。首先通过对聚类切分后的区域从不同维度进行切片,得到各个区域不同行业类别在多个属性切面的量化特征。再通过构建动态加权密度聚类模型,提出以非位置属性计算权重系数修正判定位置点分类的相似度函数,实现对城市重点区块的抽取。综合切片和聚类提取结果,归纳出了目标城市行业空间特征模式。仿真结果表明,基于多维位置数据的数据挖掘可以实现对城市行业空间特征的直接提取,抽取得到的重点区块具有明显的高热特性。聚类分析结果与城市行业基本特征的吻合度较高,表明所提出的动态加权聚类算法较传统的密度聚类算法更适合于多维位置数据的挖掘,同时也为现有的城市空间布局模式研究中对位置点集密度聚类分析难于设置网格大小和密度带宽的问题提供了一条新的思路。
关键词(KeyWords): 城市空间特征;数据挖掘;位置数据;聚类分析;行业布局
基金项目(Foundation): 抚州市2019年社会科学规划项目(19SK02);; 国家自然科学基金项目(41576105,41604010);; 湖北省杰出青年科学基金项目(2019CFA086)
作者(Author): 郭名静,边少锋,单潮龙,熊鑫,曾立庆
DOI: 10.16251/j.cnki.1009-2307.2020.10.018
参考文献(References):
- [1] 张文忠,李业锦.北京市商业布局的新特征和趋势[J].商业研究,2005(8):170-172.(ZHAN Wenzhong,LI Yejin.A study on characteristics and trends of commercial spatial distribution in Beijing[J].Commercial Research,2005(8):170-172.)
- [2] 仵宗卿,柴彦威.论城市商业活动空间结构研究的几个问题[J].经济地理,2000(1):115-120.(XU Zongqing,CAI Yanwei.Concerns of study on spatial structure of urban commercial activity[J].Economic Geography,2000(1):115-120.)
- [3] 邓羽,蔡建明,杨振山,等.北京城区交通时间可达性测度及其空间特征分析[J].地理学报,2012,67(2):169-178.(DENG Yu,CAI Jianming,YANG Zhenshan,et al.Measuring time accessibility with its spatial characteristics in urban areas of Beijing[J].Acta Geographica Sinica,2012,67(2):169-178.)
- [4] BAILEYKELLOGG C,RAMAKRISHNAN N V,MARATHE M.Spatial data mining to support pandemic preparedness[J].SIGKDD Explorations,2006,8(1):80-82.
- [5] PELEKIS N,THEODORIDIS Y.Introduction in:mobility data management and exploration[M].New York:Springer,2014.
- [6] ZHAO Xiangyu,TANG Jiliang.Crime in urban areas:a data mining perspective[J].SIGKDD Explorations,2018,20(1):80-82.
- [7] 段炼,党兰学,李铭,等.位置数据稀疏约束下的疑犯时空位置预测[J].郑州大学学报(工学版),2018,39(5):58-62.(DUAN Lian,DANG Lanxue,LI Ming,et al.Spatiotemporal prediction of suspect under location data sparsity constraint[J].Journal of Zhengzhou University(Engineering Science),2018,39(5):58-62.)
- [8] 龚希,陈占龙,谢忠.出租车轨迹数据的地域间移动模式分析[J].武汉大学学报(信息科学版),2018,43(10):1595-1602.(GONG Xi,CHEN Zhanlong,XIE Zhong.Analysis on zone-based movement pattern using taxi trajectory data[J].Geomatics and Information Science of Wuhan University,2018,43(10):1595-1602.)
- [9] 谷岩岩,焦利民,董婷,等.基于多源数据的城市功能区识别及相互作用分析[J].武汉大学学报(信息科学版),2018,43(7):1113-1121.(GU Yanyan,JIAO Limin,DONG Ting,et al.Spatial distribution and interaction analysis of urban functional areas based on multi-source data[J].Geomatics and Information Science of Wuhan University,2018,43(7):1113-1121.)
- [10] 武芳,巩现勇,杜佳威.地图制图综合回顾与前望[J].测绘学报,2017,46(10):1645-1664.(WU Fang,GONG Xianyong,DU Jiawei.Overview of the research progress in automated map generalization[J].Acta Geodaetica et Cartographica Sinica,2017,46(10):1645-1664.)
- [11] HOLLENSTEIN L,PURVES R.Exploring place through user-generated content:using Flickr to describe city cores[J].Journal of Spatial Information Science,2010,1(1):21-48.
- [12] SHEN J,LIU X,CHEN M.Discovering spatial and temporal patterns from taxi-based floating car data:a case study from Nanjing[J].GIScience & Remote Sensing,2017,54(5):617-638.
- [13] 田晶,熊富全,程雪萍,等.道路密度分区及其在道路选取质量评价中的应用[J].武汉大学学报(信息科学版),2016,41(9):1225-1231.(TIAN Jing,XIONG Fuquan,CHENG Xueping,et al.Road density partition and its application in evaluation of road selection[J].Geomatics and Information Science of Wuhan University,2016,41(9):1225-1231.)
- [14] 薛东前,黄晶,马蓓蓓,等.西安市文化娱乐业的空间格局及热点区模式研究[J].地理学报,2014,69(4):541-552.(XUE Dongqian,HUANG Jing,MA Beibei,et al.Spatial distribution characteristics and hot zone patterns of entertainment industry in Xi’an[J].Acta Geographica Sinica,2014,69(4):541-552.)
- [15]许泽宁,高晓路.基于电子地图兴趣点的城市建成区边界识别方法[J].地理学报,2016,71(6):928-939.(XU Zening,GAO Xiaolu.A novel method for identifying the boundary of urban built-up areas with POI data[J].Acta Geographica Sinica,2016,71(6):928-939.)
- [16]吴康敏,张虹鸥,王洋,等.广州市多类型商业中心识别与空间模式[J].地理科学进展,2016,35(8):963-974.(WU Kangmin,ZHANG Hong’ou,WANG Yang,et al.Identify of the multiple types of commercial center in Guangzhou and its spatial pattern[J].Progress in Geography,2016,35(8):963-974.)
- [17]YU W,AI T,SHAO S.The analysis and delimitation of central business district using network kernel density estimation[J].Journal of Transport Geography,2015,45(1):32-47.
- [18]TANG M,ZHOU Y,CUI P,et al. Discovery of migration habitats and routes of wild bird species by clustering and association analysis[C]∥International Conference on Advanced Data Mining and Applications.[S.l.]:[s.n.],2009.
- [19]HU Y,GAO S,JANOWICZ K,et al.Extracting and understanding urban areas of interest using geotagged photos[J]. Computers,Environment and Urban Systems,2015,54:240-254.
- [20]GAO S,JANOWICZ K,MONTELLO D R,et al.A data-synthesis-driven method for detecting and extracting vague cognitive regions[J].International Journal of Geographical Information Systems,2017,31(6):1245-1271.
- [21]高凯,杨敏,张跃鹏.保持空间分布特征的散列式居民地综合选取方法[J].测绘科学技术学报,2015,32(6):626-630.(GAO Kai,YANG Min,ZHANG Yuepeng.A method of automatic selection of hash-style habitation with spatial distribution characteristics preserved[J].Journal of Geomatics Science and Technology,2015,32(6):626-630.)
- [22]DENG M,LIU Q,CHENG T,et al. An adaptive spatial clustering algorithm based on Delaunay triangulation[J].Computers Environment&Urban Systems,2011,35(4):320-332.
- [23]LIU Q,DENG M,SHI Y,et al. A density-based spatial clustering algorithm considering both spatial proximity and attribute similarity[J].Computers and Geosciences,2012,46(3):296-309.