一种时空混合插值算法及其应用A spatio-temporal hybrid interpolation method and its application
张仲荣,王亚领,闫浩文
摘要(Abstract):
针对传统的时空克里格算法的精度受到时空变异函数的影响,而时空变异函数理论模型的选择常受主观因素影响和理论半变异函数局限,没有普适性的建模方法;加之参数较多估计困难,致使插值精度不高的问题,该文提出一种普适性的基于广义回归神经网络自适应时空克里格插值变异函数拟合方法,在此基础上建立了广义回归神经网络与时空克里格结合的新颖时空混合插值算法。通过与传统插值方法在民勤县地下水埋深插值中的比较研究表明,该时空混合插值算法的插值精度显著提高,并且是一个普适性的插值法。
关键词(KeyWords): 时空克里格;变异函数;插值精度;普适性;广义回归神经网络
基金项目(Foundation): 国家自然科学基金项目(41371435,61364001,71563025)
作者(Author): 张仲荣,王亚领,闫浩文
DOI: 10.16251/j.cnki.1009-2307.2016.12.052
参考文献(References):
- [1]WANG H,ZHANG R,LIU W,et al.Improved interpolation method based on singular spectrum analysis iteration and its application in missing data recovery[J].Applied Mathematics&Mechanics,2008,29(10):1351-1361.
- [2]LI J.A review of spatial interpolation methods for environmental scientists[J].Record-Geoscience Australia,2008(137):4-26.
- [3]HENGL T,HEUVELINK G B M,STEIN A.A generic framework for spatial prediction of soil variables based on regression-kriging[J].Geoderma,2004,120(1/2):75-93.
- [4]CHEN Fengwen,LIU C W.Estimation of the spatial rainfall distribution using inverse distance weighting(IDW)in the middle of Taiwan[J].Paddy&Water Environment,2012,10(3):209-222.
- [5]HU Shougeng,CHENG Qiuming,WANG Le,et al.Modeling land price distribution using multifractal IDW interpolation and fractal filtering method[J].Landscape&Urban Planning,2013,110(1):25-35.
- [6]LI J,HEAP A D,POTTER A,et al.Application of machine learning methods to spatial interpolation of environmental variables[J].Environmental Modelling&Software,2011,26(12):1647-1659.
- [7]OLIVER M A,WEBSTER R.Kriging:a method of interpolation for geographical information systems[J].International Journal of Geographical Information Systems,1990,4(3):313-332.
- [8]XU W,ZOU Y,ZHANG G,et al.A comparison among spatial interpolation techniques for daily rainfall data in Sichuan province,China[J].International Journal of Climatology,2015,35(10):2898-2907.
- [9]李莎,舒红,徐正全.利用时空Kriging进行气温插值研究[J].武汉大学学报:信息科学版,2012,37(2):237-241.
- [10]徐爱萍,胡力,舒红.空间克里格插值的时空扩展与实现[J].计算机应用,2011,31(1):273-276.
- [11]张仁铎.空间变异理论及应用[M].北京:科学出版社,2005:22-78.
- [12]MA C.Families of spatio-temporal stationary covariance models[J].Journal of Statistical Planning&Inference,2003,116(2):489-501.
- [13]IACO S D,MYERS D E,POSA D.Nonseparable space-time covariance models:some parametric families[J].Mathematical Geology,2001,34(1):23-42.
- [14]王辉赞,张韧,刘巍,等.支持向量机优化的克里格插值算法及其海洋资料对比试验[J].大气科学学报,2011,34(5):567-573.
- [15]吴王文,杨永国,陈优阔.基于LSSVM优化的Kriging方法预测煤厚变化研究[J].煤炭技术,2015,34(5):89-91.
- [16]杨勇,梅杨,张楚天,等.基于时空克里格的土壤重金属时空建模与预测[J].农业工程学报,2014(21):249-255.
- [17]MA C.Spatio-temporal stationary covariance models[J].Journal of Multivariate Analysis,2003,86(1):97-107.
- [18]王小川.MATLAB神经网络43个案例分析[M].北京:航空航天大学出版社,2013:67-73.
- [19]贾义鹏,吕庆,尚岳全.基于粒子群算法和广义回归神经网络的岩爆预测[J].岩石力学与工程学报,2013,32(2):343-348.
- [20]李莎,舒红,徐正全.东北三省月降水量的时空克里格插值研究[J].水文,2011,31(3):31-35.
- [21]李世鹏.基于时空序列模型的变形分析研究[D].西安:长安大学,2014:30-44.