深度学习支持下的尾矿库遥感识别方法Remote sensing identification of tailings pond based on deep learning model
刘冰洁,邢旭东,吴浩,胡少华,昝军
摘要(Abstract):
针对现有安全风险防范工作中对尾矿库数量统计与"一库一策"的管理需求,该文提出了一种将深度学习与随机森林结合的典型尾矿库遥感目标识别方法。首先,运用Faster R-CNN模型进行基于遥感影像的尾矿库目标检测,实现大范围影像内尾矿库正确识别结果的保留;其次,为进一步提高识别精度,统计识别结果中图像的几何特征,采用U-Net分别设计尾矿库语义分割模型与尾矿库水、砂、坝场景分割模型,获取了尾矿库面积特征、场景元素几何特征与空间关系特征,通过改进的Res-Net图像分类模型得出尾矿库概率特征;最后,基于随机森林分类模型对单一特征与多特征组合进行模型训练与测试,得到最优特征参数组合,从而实现典型尾矿库的高精度识别。结果表明,该文提出的方法能够在稀少样本条件下,通过特征提取与最优特征组合实现不同区域尾矿库高精度识别与提取,可为尾矿库科学管理工作提供一定技术支持。
关键词(KeyWords): 遥感影像;目标检测;特征提取;随机森林;尾矿库识别
基金项目(Foundation): 湖北省技术创新专项(重大项目)(2019ACA143)
作者(Author): 刘冰洁,邢旭东,吴浩,胡少华,昝军
DOI: 10.16251/j.cnki.1009-2307.2021.12.018
参考文献(References):
- [1] SANTAMARINA J C,TORRES-CRUZ L A,BACHUS R C.Why coal ash and tailings dam disasters occur[J].Science,2019,364(6440):526-528.
- [2] 李全明,张红,李钢.中国与加拿大尾矿库安全管理对比分析[J].中国矿业,2017,26(1):21-24.(LI Quanming,ZHANG Hong,LI Gang.Comparative analysis on safety management of tailings ponds in China and Canada[J].China Mining Magazine,2017,26(1):21-24.)
- [3] CHENG Gong,HAN Junwei.A survey on object detection in optical remote sensing images[J].ISPRS Journal of Photogrammetry and Remote Sensing,2016,117:11-28.
- [4] MA Baodong,CHEN Yuteng,ZHANG Song,et al.Remote sensing extraction method of tailings ponds in ultra-low-grade iron mining area based on spectral characteristics and texture entropy[J].Entropy,2018,20(5):345.
- [5] HAO Lina,ZHANG Zhi,YANG Xiaoxia.Mine tailing extraction indexes and model using remote-sensing images in southeast Hubei Province[J].Environmental Earth Sciences,2019,78(15):1-11.
- [6] 郝利娜,张志,何文熹,等.鄂东南尾矿库高分辨率遥感图像识别因子研究[J].国土资源遥感,2012,24(3):154-158.(HAO Lina,ZHANG Zhi,HE Wenxi,et al.Tailings reservoir recognition factors of the high resolution remote sensing image in southeastern Hubei[J].Remote Sensing for Land & Resources,2012,24(3):154-158.)
- [7] 高永志,初禹,梁伟.黑龙江省矿集区尾矿库遥感监测与分析[J].国土资源遥感,2015,27(1):160-163.(GAO Yongzhi,CHU Yu,LIANG Wei.Remote sensing monitoring and analysis of tailings ponds in the ore concentration area of Heilongjiang Province[J].Remote Sensing for Land & Resources,2015,27(1):160-163.)
- [8] 张丹,武伟伟.尾矿库安全管理信息化建设重要性探讨[J].矿业研究与开发,2021,41(3):117-120.(ZHANG Dan,WU Weiwei.Discussion on the importance of the information construction in safety management of tailings pond[J].Mining Research and Development,2021,41(3):117-120.)
- [9] 熊文成,肖如林,申文明,等.国产单极化SAR数据在锰渣尾矿库自动化识别中的应用[J].国土资源遥感,2014,26(4):119-124.(XIONG Wencheng,XIAO Rulin,SHEN Wenming,et al.Application of Chinese single polarization SAR data in automatic identification of manganese slag pools[J].Remote Sensing for Land & Resources,2014,26(4):119-124.)
- [10] HINTON G E,OSINDERO S,TEH Y W.A fast learning algorithm for deep belief nets[J].Neural Computation,2006,18(7):1527-1554.
- [11] 曹云刚,王志盼,慎利,等.像元与对象特征融合的高分辨率遥感影像道路中心线提取[J].测绘学报,2016,45(10):1231-1240.(CAO Yungang,WANG Zhipan,SHEN Li,et al.Fusion of pixel-based and object-based features for road centerline extraction from high-resolution satellite imagery[J].Acta Geodaetica et Cartographica Sinica,2016,45(10):1231-1240.)
- [12] 崔腾腾,刘纪平,罗安.一种卷积神经网络的地图图片智能识别方法[J].测绘科学,2019,44(1):118-123.(CUI Tengteng,LIU Jiping,LUO An.Intelligent identification method of network map images based on convolutional neural network[J].Science of Surveying and Mapping,2019,44(1):118-123.)
- [13] 刘冰,左溪冰,谭熊,等.高光谱影像分类的深度少样例学习方法[J].测绘学报,2020,49(10):1331-1342.(LIU Bing,ZUO Xibing,TAN Xiong,et al.A deep few-shot learning algorithm for hyperspectral image classification[J].Acta Geodaetica et Cartographica Sinica,2020,49(10):1331-1342.)
- [14] LI Da,GONG Shaoxing,LIU Dong.Object detection in optical remote sensing images based on residual network[J].Journal of Physics:Conference Series,2020,1518(1):012035.
- [15] WANG E,LI Yueping,NIE Zhe,et al.Deep fusion feature based object detection method for high resolution optical remote sensing images[J].Applied Sciences,2019,9(6):1130.
- [16] 闫凯,沈汀,陈正超,等.基于深度学习的SSD模型尾矿库自动提取[J].中国科学院大学学报,2020,37(3):360-367.(YAN Kai,SHEN Ting,CHEN Zhengchao,et al.Automatic extraction of tailing pond based on SSD of deep learning[J].Journal of University of Chinese Academy of Sciences,2020,37(3):360-367.)
- [17] 彭令,徐素宁,梅军军,等.地震滑坡高分辨率遥感影像识别[J].遥感学报,2017,21(4):509-518.(PENG Ling,XU Suning,MEI Junjun,et al.Earthquake-induced landslide recognition using high-resolution remote sensing images[J].Journal of Remote Sensing,2017,21(4):509-518.)
- [18] 罗元,王薄宇,陈旭.基于深度学习的目标检测技术的研究综述[J].半导体光电,2020,41(1):1-10.(LUO Yuan,WANG Boyu,CHEN Xu.Research progresses of target detection technology based on deep learning[J].Semiconductor Optoelectronics,2020,41(1):1-10.)
- [19] 范丽丽,赵宏伟,赵浩宇,等.基于深度卷积神经网络的目标检测研究综述[J].光学精密工程,2020,28(5):1152-1164.(FAN Lili,ZHAO Hongwei,ZHAO Haoyu,et al.Survey of target detection based on deep convolutional neural networks[J].Optics and Precision Engineering,2020,28(5):1152-1164.)
- [20] FARHADI A,REDMON J.Yolov3:an Incremental Improvement[C]//Computer Vision and Pattern Recognition,2018:1804.
- [21] SHI Xiaoying,LU F,SENG Dewen,et al.Visualizing and understanding graph convolutional network[J].Multimedia Tools and Applications,2021,80(6):8355-8375.
- [22] YU Zeng,LI Tianrui,LUO Guangchun,et al.Convolutional networks with cross-layer neurons for image recognition[J].Information Sciences,2018,433/434:241-254.
- [23] 苏健民,杨岚心,景维鹏.基于U-Net的高分辨率遥感图像语义分割方法[J].计算机工程与应用,2019,55(7):207-213.(SU Jianmin,YANG Lanxin,JING Weipeng.U-Net based semantic segmentation method for high resolution remote sensing image[J].Computer Engineering and Applications,2019,55(7):207-213.)
- [24] 伍广明,陈奇,SHIBASAKI R,等.基于U型卷积神经网络的航空影像建筑物检测[J].测绘学报,2018,47(6):864-872.(WU Guangming,CHEN Qi,SHIBASAKI R,et al.High precision building detection from aerial imagery using a U-net like convolutional architecture[J].Acta Geodaetica et Cartographica Sinica,2018,47(6):864-872.)
- [25] BREIMAN Leo.Random forests[J].Machine Learning,2001(1):5-32.
- [26] 方传棣,成金华,赵鹏大.大保护战略下长江经济带矿产-经济-环境耦合协调度时空演化研究[J].中国人口·资源与环境,2019,29(6):65-73.(FANG Chuandi,CHENG Jinhua,ZHAO Pengda.Temporal and spatial evolution of mineral-economic-environment coordination degree in the Yangtze River economic belt under the great protection strategy[J].China Population,Resources and Environment,2019,29(6):65-73.)
- [27] 成金华,彭昕杰.长江经济带矿产资源开发对生态环境的影响及对策[J].环境经济研究,2019,4(2):125-134.(CHENG Jinhua,PENG Xinjie.Influence of mineral resources development on ecological environment in Yangtze River economic belt and its countermeasures[J].Journal of Environmental Economics,2019,4(2):125-134.)
- [28] 汪金花,曹兰杰,郭云飞,等.铁尾矿高-多光谱遥感特征分析与信息识别[J].云南大学学报(自然科学版),2019,41(5):974-981.(WANG Jinhua,CAO Lanjie,GUO Yunfei,et al.Feature analysis and information identification of the iron tailings by high-multispectral remote sensing[J].Journal of Yunnan University(Natural Sciences Edition),2019,41(5):974-981.)