改进遗传算法优化灰色神经网络隧道变形预测Tunnel deformation prediction based on grey neural network with improved genetic algorithm
张锦,陈林,赖祖龙
摘要(Abstract):
针对目前隧道变形预测方法的不足,该文提出了使用改进型遗传算法优化灰色神经网络的隧道变形预测模型。改进遗传算法策略:在种群繁衍过程中根据个体的适应度进行排序,再将排序后的种群均分为3个部分,按照比例对3个部分进行选择,最后从适应度较大的部分中随机选取个体在重新补充到种群中。改进型遗传算法可以避免陷入局部收敛成功找寻全局最优解,提高收敛速度。该文利用实际隧道监测数据进行实验,验证改进型遗传算法优化灰色神经网络的隧道变形预测模型。实验证明,改进型遗传算法优化灰色神经的隧道变形预测模型在进行隧道拱顶下沉量预测时有着更高的精度、更好的稳定性。
关键词(KeyWords): 遗传算法;灰色神经网络;算法改进;隧道监测;预测
基金项目(Foundation): 国家自然科学基金项目(41504023)
作者(Author): 张锦,陈林,赖祖龙
DOI: 10.16251/j.cnki.1009-2307.2021.02.009
参考文献(References):
- [1]VORA O,VORA P,VORA U.Predictive modeling for infrastructure system engineering[C]∥ASCE India Conference 2017.[S.l.]:[s.n.],2018.
- [2]夏才初,那通兴,彭国才,等.公路隧道施工变形监测精度要求探讨[J].隧道建设,2016,36(5):508-512.(XIACaichu,NA Tongxing,PENG Guocai,et al.Discussion on deformation monitoring accuracy of highway tunnel construction[J].Tunnel Construction,2016,36(5):508-512.)
- [3]黄腾,孙景领,陶建岳,等.地铁隧道结构沉降监测及分析[J].东南大学学报(自然科学版),2006,36(2):262-266.(HUANG Teng,SUN Jingling,TAO Jianyue,et al.Subsidence monitoring and analyzing in subway tunnel construction[J].Journal of Southeast University(Natural Science Edition),2006,36(2):262-266.)
- [4]郭云开,谢腾,程刚,等.非等时距灰色预测模型在连拱隧道监测中的应用[J].现代隧道技术,2013,50(1):73-79.(GUO Yunkai,XIE Teng,CHENG Gang,et al.Application of unequal time-interval grey predicting model to multiple-arch tunnel monitoring[J].Modern Tunnelling Technology,2013,50(1):73-79.)
- [5]黄惠峰,张献州,张拯,等.基于BP神经网络与变形监测成果的隧道安全状态评估[J].测绘工程,2015,24(3):53-58.(HUANG Huifeng,ZHANG Xianzhou,ZHANG Zheng,et al.Research on tunnel safety state evaluation based on BP neural network and deformation monitoring results[J].Engineering of Surveying and Mapping,2015,24(3):53-58.)
- [6]林敏.基于人工神经网络的隧道监测数据预测模型仿真研究[D].西安:长安大学,2010.(LIN Min.The study of model simulation of datamonitoring prediction for highway tunnel based on neural network[D].Xi’an:Chang’an University,2010.)
- [7]国威.基于神经网络理论的公路隧道围岩变形预测与稳定性分析[D].重庆:重庆大学,2009.(GUO Wei.Prediction of rock deformation and analysis of rock stability of tunnel based on the neural network[D].Chongqing:Chongqing University,2009.)
- [8]丁彦心.改进时间序列分析模型在地铁施工沉降监测预报中的应用[D].阜新:辽宁工程技术大学,2013.(DING Yanxin.Improved time series analysis model applied to subway construction settlement monitoring and forecasting[D].Fuxin:Liaoning University of Engineering and Technology,2013.)
- [9]许国辉,余春林.卡尔曼滤波模型的建立及其在施工变形测量中的应用[J].测绘通报,2004(4):22-23,42.(XU Guohui,YU Chunlin.Establishment of Kalman filtering model and its application in construction deformation measurement[J].Bulletin of Surveying and Mapping,2004(4):22-23,42.)
- [10]袁景凌,钟珞,李小燕.灰色神经网络的研究及发展[J].武汉理工大学学报,2009,31(3):91-93.(YUANJingling,ZHONG Luo,LI Xiaoyan.The research and development of grey neural network[J].Journal of Wuhan University of Technology,2009,31(3):91-93.)
- [11]林勤.基于遗传算法优化灰色神经网络的浙江省公路客运量预测模型[D].武汉:华中师范大学,2013.(LINQin.The forecasting model of passenger carrying based on genetic algorithm optimizing the gray neural network[D].Wuhan:Central China Normal University,2013.)
- [12]刘浩然,赵翠香,李轩,等.一种基于改进遗传算法的神经网络优化算法研究[J].仪器仪表学报,2016,37(7):1573-1580.(LIU Haoran,ZHAO Cuixiang,LI Xuan,et al.Study on a neural network optimization algorithm based on improved genetic algorithm[J].Chinese Journal of Scientific Instrument,2016,37 (7):1573-1580.)
- [13]MUSTAFA K.The effects of a new selection operator on the performance of a genetic algorithm[J].Applied Mathematics and Computation,2011,217 (19):7669-7678.
- [14]张超群,郑建国,钱洁.遗传算法编码方案比较[J].计算机应用研究,2011,28(3):819-822.(ZHANGChaoqun,ZHENG Jianguo,QIAN Jie.Comparison of coding schemes for genetic algorithms[J].Application Research of Computers,2011,28(3):819-822.)
- [15]ZHANG Qiang,WANG Bin,ZHANG Rui,et al.Design of DNA sequence sets based on dynamic genetic algorithm[J].Chinese Journal of Computers,2008,31(12):2193-2199.