测绘科学

2021, v.46;No.282(12) 140-146

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

改进U-Net的高分影像建筑物提取方法
Building extraction from high resolution remote sensing image based on improved U-Net model

卢彻,徐胜华,朱军

摘要(Abstract):

针对高分辨率遥感影像中普遍存在的同谱异物和同物异谱现象以及传统全卷积神经网络随网络层数增加导致的梯度消失等问题,该文提出了基于改进U-Net的高分辨率遥感影像建筑物提取方法。利用残差思想对U-Net网络结构进行优化,采用Adam优化器进行参数的更新,同时引入Dropout与批标准化,改进U-Net可以有效防止模型的过拟合现象,从而提高模型的泛化能力。实验结果表明,该文提出的改进U-Net对影像中的建筑物提取结果较好,在测试集上达到了94%以上的正确率,召回率达到79%,精确率达到78%,Kappa系数达到95%,相比U-Net分别提高了2%、2%、16%以及4%,实现了对城市区域遥感影像中的建筑物精确、快速提取。

关键词(KeyWords): 高分辨率遥感影像;U-Net模型;残差学习;建筑物提取;深度学习

Abstract:

Keywords:

基金项目(Foundation): 国家重点研发计划项目(2016YFC0803100)

作者(Author): 卢彻,徐胜华,朱军

DOI: 10.16251/j.cnki.1009-2307.2021.12.019

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享