改进LinkNet的高分辨率遥感影像建筑物提取方法Improved LinkNet building extraction method for high resolution remote sensing image
张立亭,孔文学,罗亦泳,邓先金,夏文生
摘要(Abstract):
针对现有的遥感影像建筑物提取方法存在着效率低下、精度不高等问题,该文利用轻量型分割网络LinkNet框架构建出新的建筑物提取全卷积网络。设计三层卷积模块替换LinkNet中的残差层作为新的编码块,有效减少网络参数,加快了网络训练速度;融合增强感受野模块聚合多尺度上下文信息,有利于图像特征细节的恢复,从而提高网络分割精度;综合上述两点构建出基于深度学习的高性能建筑物自动提取网络。在相应建筑物数据集上进行实验结果表明,本文构建的全卷积网络比已有的建筑物提取网络SE-Unet综合预测精度更高,取得82.80%的均交并比和95.99%的召回率,同时,在提取建筑物的完整度、边界分割精度等方面具有较好的效果。
关键词(KeyWords): 遥感影像;建筑物提取;三层卷积模块;增强感受野模块;深度学习
基金项目(Foundation): 国家自然科学基金项目(41861058)
作者(Author): 张立亭,孔文学,罗亦泳,邓先金,夏文生
DOI: 10.16251/j.cnki.1009-2307.2022.09.015
参考文献(References):
- [1]何小飞,邹峥嵘,陶超,等.联合显著性和多层卷积神经网络的高分影像场景分类[J].测绘学报,2016,45(9):1073-1080.(HE Xiaofei,ZOU Zhengrong,TAO Chao,et al.Combined saliency with multi-convolutional neural network for high resolution remote sensing scene classification[J].Acta Geodaetica et Cartographica Sinica,2016,45(9):1073-1080.)
- [2]孙显,王宏琦,张正.基于对象的Boosting方法自动提取高分辨率遥感图像中建筑物目标[J].电子与信息学报,2009,31(1):177-181.(SUN Xian,WANG Hongqi,ZHANG Zheng.Automatic building extraction in high resolution remote sensing image using object-based boosting method[J].Journal of Electronics&Information Technology,2009,31(1):177-181.)
- [3]吴炜,骆剑承,沈占锋,等.光谱和形状特征相结合的高分辨率遥感图像的建筑物提取方法[J].武汉大学学报(信息科学版),2012,37(7):800-805.(WU Wei,LUOJiancheng,SHEN Zhanfeng,et al.Building extraction from high resolution remote sensing imagery based on spatial-spectral method[J].Geomatics and Information Science of Wuhan University,2012,37(7):800-805.)
- [4]胡荣明,黄小兵,黄远程.增强形态学建筑物指数应用于高分辨率遥感影像中建筑物提取[J].测绘学报,2014,43 (5):514-520.(HU Rongming,HUANGXiaobing,HUANG Yuancheng.An enhanced morphological building index for building extraction from high-resolution images[J].Acta Geodaetica et Cartographica Sinica,2014,43(5):514-520.)
- [5]季顺平,魏世清.遥感影像建筑物提取的卷积神经元网络与开源数据集方法[J].测绘学报,2019,48(4):448-459.(JI Shunping,WEI Shiqing.Building extraction via convolutional neural networks from an open remote sensing building dataset[J].Acta Geodaetica et Cartographica Sinica,2019,48(4):448-459.)
- [6]SHELHAMER E,LONG J,DARRELL T.Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(4):640-651.
- [7]RONNEBERGER O,FISCHER P,BROX T.U-net:Convolutional networks for biomedical image segmentation[C]∥Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015,2015:234-241.
- [8]刘浩,骆剑承,黄波,等.基于特征压缩激活Unet网络的建筑物提取[J].地球信息科学学报,2019,21(11):1779-1789.(LIU Hao,LUO Jiancheng,HUANG Bo,et al.Building extraction based on SE-unet[J].Journal of Geo-Information Science,2019,21(11):1779-1789.)
- [9]张永洪,席梦丹.带洞型U-Net++网络在遥感影像中建筑物的提取方法[J].测绘地理信息,2021,46(S1):82-86.(ZHANG Yonghong,XI Mengdan.A method for extracting buildings from remote sensing images with hole U-net++network[J].Journal of Geomatics,2021,46(S1):82-86.)
- [10]CHAURASIA A,CULURCIELLO E.LinkNet:Exploiting encoder representations for efficient semantic segmentation[C]∥2017IEEE Visual Communications and Image Processing.St.Petersburg,FL,USA:IEEE,2017:1-4.
- [11]LIU S,HUANG D.Receptive field block net for accurate and fast object detection[C]∥Proceedings of the European Conference on Computer Vision(ECCV).[S.l.:s.n.],2018:385-400.
- [12]HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Deep residual learning for image recognition[C]∥2016IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,NV,USA:IEEE,2016:770-778.
- [13]IOFFE S,SZEGEDY C.Batch normalization:Accelerating deep network training by reducing internal covariate shift[C]∥International Conference on Machine Learning.[S.l.:s.n.],2015:448-456.
- [14]ZHOU Peng,NI Bingbing,GENG Cong,et al.Scaletransferrable object detection[C]∥2018IEEE/CVFConference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA.IEEE,2018:528-537.
- [15]SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]∥2016IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,NV,USA:IEEE,2016:2818-2826.
- [16]HE K,ZHANG X,REN S,et al.Identity mappings in deep residual networks[C]∥European Conference on Computer Vision.[S.l.]:Springer,2016:630-645.
- [17]YU F,KOLTUN V.Multi-scale context aggregation by dilated convolutions[Z].[S.l.:s.n.],2015.
- [18]WANG Panqu,CHEN Pengfei,YUAN Ye,et al.Understanding convolution for semantic segmentation[C]∥2018IEEE Winter Conference on Applications of Computer Vision.Lake Tahoe,NV,USA:IEEE,2018:1451-1460.
- [19]HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916.
- [20]ZHAO Hengshuang,SHI Jianping,QI Xiaojuan,et al.Pyramid scene parsing network[C]∥2017 IEEEConference on Computer Vision and Pattern Recognition.Honolulu,HI,USA:IEEE,2017:6230-6239.
- [21]CHEN L C,PAPANDREOU G,KOKKINOS I,et al.DeepLab:semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,40 (4):834-848.
- [22]CHEN L C,PAPANDREOU G,SCHROFF F,et al.Rethinking atrous convolution for semantic image segmentation[EB/OL].[2022-05-09].https:∥arxiv.org/abs/1706.05587.
- [23]ZHOU Lichen,ZHANG Chuang,WU Ming.D-LinkNet:LinkNet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction[C]∥2018IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW).Salt Lake City,UT,USA:IEEE,2018:192-1924.
- [24]MNIH V.Machine learning for aerial image labeling[D].Toronto:University of Toronto(Canada),2013.