基于单目及惯导的同步定位与建图方案Simultaneous localization and mapping scheme based on monocular and IMU
刘振彬,危双丰,庞帆,师现杰
摘要(Abstract):
针对目前纯视觉SLAM系统易受环境光照、纹理以及动态环境等场景的影响,其中单目SLAM系统还存在着初始化尺度模糊的问题,该文使用一种改进的非线性优化单目惯导SLAM方案,有效解决了单目SLAM系统中存在的尺度模糊问题。基于目前单目视觉和IMU融合性能最好的VINS-mono系统,改进初始化方案,增加了加速度bias偏差的初始化,使其能够适用于低成本的IMU传感器;借鉴ORB-SLAM方案,将基于ORB特征点法的前端应用于VINS-mono方案中,结合改进后的初始化方案,实现了较高精度的实时定位与稀疏地图重建。通过在EuRoc数据集中不同场景下的实验与分析,证明了改进后的VINS-mono方案相比之前的精度和鲁棒性都得到了提高。
关键词(KeyWords): 非线性优化;IMU;单目相机;状态估计;SLAM
基金项目(Foundation): 北京建筑大学市属高校基本科研业务费专项资金资助项目(X18229);; 促进高校内涵发展定额项目(PG2019061,PG2019065)
作者(Author): 刘振彬,危双丰,庞帆,师现杰
DOI: 10.16251/j.cnki.1009-2307.2020.09.014
参考文献(References):
- [1] 王德智.基于ROS的惯性导航和视觉信息融合的移动机器人定位研究[D].哈尔滨:哈尔滨工业大学,2017.(WANG Dezhi.Research on mobile robot location based on inertial navigation and visual information fusion based on ROS[D].Harbin:Harbin University of Technology,2017.)
- [2] 王琪.基于非线性优化的单目VINS系统的研究[D].哈尔滨:哈尔滨工业大学,2017.(WANG Qi.Research on monocular VINS using nonlinear optimization[D].Harbin:Harbin University of Technology,2017.)
- [3] MUR-ARTAL R,MONTIEL J M M,TARDóS J D.ORB-SLAM:a versatile and accurate monocular SLAM system[J].IEEE Transactions on Robotics,2017,31(5):1147-1163.
- [4] KLEIN G,MURRAY D.Parallel tracking and mapping for small AR workspaces[C]//IEEE and ACM International Symposium on Mixed and Augmented Reality.[S.l.:s.n.],2007:1-10.
- [5] FORSTER C,PIZZOLI M,SCARAMUZZA D.SVO:fast semi-direct monocular visual odometry[C]//IEEE International Conference on Robotics and Automation.Hong Kong:IEEE,2014:15-22.
- [6] ENGEL J,SCH?PS T,CREMERS D.LSD-SLAM:large-scale direct monocular SLAM[C]//European Conference on Computer Vision.[S.l.:s.n.],2014:834-849.
- [7] 梁明杰,闵华清,罗荣华.基于图优化的同时定位与地图创建综述[J].机器人,2013,36(4):500-512.(LIANG Mingjie,MIN Huaqing,LUO Ronghua.Graph-based SLAM:a survey[J].Robot,2013,35(4):500-512.)
- [8] 刘浩敏,章国锋,鲍虎军.基于单目视觉的同时定位与地图构建方法综述[J].计算机辅助设计与图形学学报,2016,28(6):855-868.(LIU Haomin,ZHANG Guofeng,BAO Hujun.A survey of monocular simultaneous localization and mapping[J].Journal of Computer-Aided Design & Computer Graphics,2016,28(6):855-868.)
- [9] 权美香,朴松昊,李国.视觉SLAM综述[J].智能系统学报,2016,11(6):768-776.(QUAN Meixiang,PU Songhao,LI Guo.AN overview of visual SLAM[J].Journal of Intelligent Systems,2016,11(6):768-776.)
- [10] 高翔,张涛,刘毅,等.视觉SLAM十四讲:从理论到实践[M].北京:电子工业出版社,2017:17-22.(GAO Xiang,ZHANG Tao,LIU Yi,et al.Visual SLAM 14 lectures:from theory to practice[M].Beijing:Publishing House of Electronics Industry,2017:17-22.)
- [11] WEISS S,ACHTELIK M W,LYNEN S,et al.Real-time onboard visual-inertial state estimation and self-calibration of MAVs in unknown environments[C]//2012 IEEE International Conference on Robotics and Automation.Saint Paul:IEEE,2012.
- [12] LYNEN S,ACHTELIK M W,WEISS S,et al.A robust and modular multi-sensor fusion approach applied to MAV navigation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Tokyo,Japan:IEEE,2013:3923-3929.
- [13] MOURIKIS A I,ROUMELIOTIS S I.A multi-state constraint Kalman filter for vision-aided inertial navigation[C]//Proceedings 2007 IEEE International Conference on Robotics and Automation.Roma,Italy:IEEE,2007:3565-3572.
- [14] LI M,MOURIKIS A.High-precision,consistent EKF-based visual-inertial odometry[J].International Journal of Robotics Research,2013,32(6):690-711.
- [15] BLOESCH M,OMARI S,HUTTER M,et al.Robust visual inertial odometry using a direct EKF-based approach[C]//International Conference on Intelligent Robots and Systems.Hamburg,Germany:IEEE,2015:298-304.
- [16] SHEN S J,MICHAEL N,KUMAR V.Tightly-coupled monocular visual-inertial fusion for autonomous flight of rotorcraft MAVs[C]//2015 IEEE International Conference on Robotics and Automation.Seattle,WA,USA:IEEE,2015.
- [17] YANG Z,SHEN S.monocular visual-inertial state estimation with online initialization and camera-IMU extrinsic calibration[J].IEEE Transactions on Automation Science and Engineering,2016,14(1):1-13.
- [18] LEUTENEGGER S,LYNEN S,BOSSE M,et al.Key frame-based visual-inertial odometry using nonlinear optimization[J].The International Journal of Robotics Research,2015,34(3):314-334.
- [19] MUR-ARTAL R,TARDOS J D.Visual-inertial monocular SLAM with map reuse[J].IEEE Robotics and Automation Letters,2017,2(2):796-803.
- [20] LUPTON T,SUKKARIEH S.Visual-inertial-aided navigation for high-dynamic motion in built environments without initial conditions[J].IEEE Transactions on Robotics,2012,28(1):61-76.
- [21] FORSTER C,CARLONE L,DELLAERT F,et al.On-manifold preintegration for real-time visual—inertial odometry[J].IEEE Transactions on Robotics,2015,31(1):1-21.
- [22] QIN T,LI P L,SHEN S J.VINS-Mono:a robust and versatile monocular visual-inertial state estimator[J].IEEE Transactions on Robotics,2018,34(4):1004-1020.
- [23] SOLà JOAN.Quaternion kinematics for the error-state Kalman filter[EB/OL].[2019-05-21]https://upcommons.upc.edu/bitstream/handle/2117/104997/1773-Quaternion-kinematics-for-the-error-state-Kalman-filter.pdf?sequence=1.
- [24] 佚名.小米智能技术参数[EB/OL][2019-05-08].http:∥www.myntai.com/cn/mynteye/standard/specs.(Anonymous.Millet intelligent technical parameters[EB/OL].[2019-05-08].http://www.myntai.com/cn/mynteye/standard/specs.)
- [25] JüRGEN S,ENGELHARD N,ENDRES F,et al.A benchmark for the evaluation of RGB-D SLAM systems[C]//International Conference on Intelligent Robots and Systems.Vilamoura,Portugal:IEEE,2012.