一种时区聚类协同过滤的空间信息服务质量预测A timezone clustering based collaborative filtering approach for QoGIS prediction
游兰,张海兵,桂志鹏,胡凯,吴华意
摘要(Abstract):
针对现有研究较少关注时空特征对服务质量的影响,预测准确性有限的不足,该文提出了一种基于时区聚类协同过滤的空间信息服务质量预测算法:利用时区特征进行用户和空间信息服务的聚类,并采用时区优化的相似度计算方法寻找相似用户和相似服务,通过构建时区约束的邻近用户—服务矩阵进行空间信息服务质量的综合预测。最后,实验结果证明基于时区聚类协同过滤方法可以显著提高空间信息服务质量预测的准确性。
关键词(KeyWords): 空间信息服务质量;协同过滤;空间服务预测;时区
基金项目(Foundation): 国家自然科学基金项目(41371372,41401464)
作者(Author): 游兰,张海兵,桂志鹏,胡凯,吴华意
DOI: 10.16251/j.cnki.1009-2307.2015.05.022
参考文献(References):
- [1]DONG X,HALEVY A,MADHAVAN J,et al.Similarity Search for Web Services[C]//Proceedings of the Thirtieth international conference on Very large data bases-Volume 30.VLDB Endowment,2004:372-383.
- [2]SHAO L,ZHANG J,WEI Y,et al.Personalized Qos Prediction for Web Services Via Collaborative Filtering[C]//Web Services,2007.ICWS 2007.IEEE International Conference on.IEEE,2007:439-446.
- [3]ZHENG Z,MA H,LYU M R,et al.Qos-aware Web Service Recommendation by Collaborative Filtering[C]//Services Computing,IEEE Transactions on.IEEE,2011,4(2):140-152.
- [4]ZHENG Z,MA H,LYU M R,et al.Wsrec:A Collaborative Filtering Based Web Service Recommender System[C]//Web Services,2009.ICWS 2009.IEEE International Conference on.IEEE,2009:437-444.
- [5]CARLKADIE,J S B D H.Empirical Analysis of Predictive Algorithms for Collaborative Filtering[J].Microsoft Research Microsoft Corporation One Microsoft Way Redmond,WA,1998:98052.
- [6]HERLOCKER J L,KONSTAN J A,BORCHERS A,et al.An Algorithmic Framework for Performing Collaborative Filtering[C]//Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.ACM,1999:230-237.
- [7]JIN R,CHAI J Y,SI L.An Automatic Weighting Scheme for Collaborative Filtering[C]//Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.ACM,2004:337-344.
- [8]邵凌霜,周立,赵俊峰.一种Web Service的服务质量预测方法[J].软件学报,2009,20(8):2062-2073.
- [9]DESHPANDE M,KARYPIS G.Item-based Top-n Recommendation Algorithms[J].ACM Transactions on Information Systems(TOIS),2004,22(1):143-177.
- [10]LINDEN G,SMITH B,YORK J.Amazon.com Recommendations:Item-to-item Collaborative Filtering[J].Internet Computing,IEEE,2003,7(1):76-80.
- [11]SARWAR B,KARYPID G,KONSTAN J,et al.Itembased Collaborative Filtering Recommendation Algorithms[C]//Proceedings of the 10th International Conference on World Wide Web.ACM,2001:285-295.
- [12]WANG J,DE VRIES A P,REINDERS M J T.Unifying User-based and Item-based Collaborative Filtering Approaches by Similarity Fusion[C].Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.ACM,2006:501-508.
- [13]王辉,高利军,王听忠.个性化服务中基干用户聚类的协同过滤推荐[J].计算机应用,2007.
- [14]CHEN X,ZHENG Z,YU Q,et al.Web Service Recommendation Via Exploiting Location and QoS Information[C]//Parallel and Distributed Systems,IEEE Transactions on.IEEE,2014,25(7):1913-1924.
- [15]YU C,HUANG L.A Web Service QoS Prediction Approach Based on Time-and Location-aware Collaborative Filtering[J].Service Oriented Computing and Applications,2014:1-15.
- [16]MCLAUGHLIN M R,Herlocker J L.A Collaborative Filtering Algorithm and Evaluation Metric that Accurately Model the User Experience[C]//Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.ACM,2004:329-336.