GPS速度场球面小波模型中的吉洪诺夫正则化方法The Tikhonov regularization applied in the spherical wavelet model of GPS velocity fields
孙罗庆,文汉江,王智福,李伟
摘要(Abstract):
针对用小波框架表示GPS速度场可能会产生病态问题,该文提出了采用吉洪诺夫正则化方法及相应的3种正则化参数选择方法(广义交叉检验法、L曲线法和留一交叉验证法)进行模型求解。该方法通过引入合适的正则化参数及正则化矩阵的方式,来克服GPS速度场球面小波模型难于得到惟一解的问题。基于中国地壳运动观测网络两个局部区域的GPS速度场数据和亚洲太平洋地区地球动力学计划局部区域的GPS速度场数据的实验结果表明:使用该方法可以得到模型的稳定解,且以外部检核均方误差最小为准则时,3种正则化参数选择方法获得的解的精度水平相当。
关键词(KeyWords): GPS速度场;正则化;广义交叉检验法;L曲线;留一交叉验证法
基金项目(Foundation): 国家自然科学基金项目(41274031,41204007);; 国家863计划项目(2013AA122502);; 地理空间信息工程国家测绘局重点实验室经费资助项目(201326);; 中国测绘科学研究院基本科研业务费项目(7771415)
作者(Author): 孙罗庆,文汉江,王智福,李伟
DOI: 10.16251/j.cnki.1009-2307.2015.04.010
参考文献(References):
- [1]Chambodut A,Panet I,Mandea M,et al.Wavelet Frames:an Alternative to Spherical Harmonic Representation of Potential Fields[J].Geophysical Journal International,2005,163:875-899.
- [2]Isabelle Pt,Yuki K,Matthias H.Wavelet Modeling of the Gravity Field by Domain Decomposition Methods:an Example over Japan[J].Geophysical Journal International,2011(184):203-219.
- [3]Carl T,Pablo M,Mark S,et al.Multiscale Estimation of GPS Velocity Fields[J].Geophysical Journal International,2009(179):945-971.
- [4]Bogdanova I,Vandergheynst P,Antoine J R,et al.Stereographic Wavelet Frames on the Sphere[J].Appl.Comput.Harmonic Anal.2005,19(2);223-252.
- [5]Koch K R,Kusche J.Regularization of Geopotential Determination from Satellite Data by Variance Components[J].Journal of Geodesy,2002(76):259-268.
- [6]顾勇为,归庆明,边少锋,等.地球物理反问题中两种正则化方法的比较[J].武汉大学学报·信息科学版,2005,30(3):238-241.
- [7]徐新禹,李建成,王正涛,等.Tikhonov正则化方法在GOCE重力场求解中模拟研究[J].测绘学报,2010,39(5):465-470.
- [8]王振杰.大地测量中不适定问题的正则化解法研究[D].武汉:中国科学院测量与地球物理研究所,2003.
- [9]Tikhonpv A N.Regularization of Ill-posed Problem[J].Dokl Akad Nauk SSSR,1963,151(1):49-52.
- [10]Xu Peiliang.Truncated SVD Methods for Discrete Linear Ill-posed Problems[J].Geophysical Journal International,1998(135):505-514.
- [11]Golub G H,Health M,Wahba G.Generalized Crossvalidation as a Method for Choosing a Good Ridge Parameter[J].Technometrics,1979,21(2):215-223.
- [12]吴颉尔.正则化方法及其在模型修正中的应用[D].南京:南京航空航天大学,2007.
- [13]Hansen P C.Analysis of Discrete Ill-posed Problems by Means of the L-curve[J].SIAM Review,1992,34(4):561-580.
- [14]Weisberg S.Applied Linear Regression[M].5th edn,Wiley,Hoboken,NJ,USA.2005.
- [15]Hansen P C.Rank-deficient and Discrete Ill-posed Problem[M].Philadephia:SIAM,1998.
- [16]Matthias H,Aude C,Mioara M.From Global to Regional Analysis of the Magnetic Field on the Sphere Using Wavelet Frames[J].Physics of Earth and Planetary Interiors,2003(135):107-124.
- [17]张胜茂,吴健平,周科松.基于正多面体的球面三角剖分与分析[J].计算机工程与应用,2008,44(9):16-19.
- [18]Jun Shao.Linear Model Selection by Cross-validation[J].Journal of the American Statistical Association,1993(88):486-494.
- [19]Jun Shao.An Asymptotic Theory for Linear Model Selection[J].Statistica Sinica,1997(7):221-242.
- [20]牛之俊,马宗晋,陈鑫连,等.中国地壳运动观测网络[J].大地测量与地球动力学,2002,22(3):88-93.
- [21]Cheng Pengfei,Wang hua,Cheng Yingyan,et al.The Trend of the APRGP Velocity Field and Plates Movement Derived from GPS Data[J].Science China Physics,Mechanics&Astronomy,2010,53(4):767-772.
- [22]杨元喜,任夏,许艳.自适应抗差滤波理论及应用的主要进展[J].导航定位学报,2013(1):9-15.
- [23]朱华,黄张裕,赵仲荣,等.基于不同核函数的LSSVM在GPS高程拟合中的应用[J].测绘工程,2014,23(5):18-20.