遗传算法优化支持向量机矿产预测方法Mineral prediction method based on support vector machine optimized with genetic algorithm
季斌,周涛发,袁峰
摘要(Abstract):
针对矿产预测中已知矿点的样本数目较少的问题,该文提出了一种基于遗传算法优化的支持向量机矿产预测方法。采用遗传算法优化支持向量机的惩罚因子和径向基核函数参数,避免了参数选择不当对支持向量机预测结果的影响,从而提高矿产预测的精度。以空间建模工具ArcSDM中的卡林型金矿床数据为例进行实验。结果表明,支持向量机模型的预测准确率为89.3%,查准率为70.2%;而证据权方法的预测准确率为79.4%,查准率为50%,均小于支持向量机预测结果,说明遗传算法优化的支持向量机是一种有效的矿产预测方法。
关键词(KeyWords): 矿产预测;支持向量机;遗传算法;智能分类
基金项目(Foundation): 中国地质调查局地质调查工作项目(1212011220369);; 安徽省公益性地质工作项目(2013-g-4);; 铜陵有色金属集团控股有限公司科技项目(2013-17);; 中央高校基本科研业务费专项(2013HGQC0024)
作者(Author): 季斌,周涛发,袁峰
DOI: 10.16251/j.cnki.1009-2307.2015.10.021
参考文献(References):
- [1]AGTERBERG F P.Computer Programs for Mineral Exploration[J].Science,1989,245(4913):76-81.
- [2]AGTERBERG F P.A Modified Weights-of-evidence Method for Regional Mineral Resource Estimation[J].Natural Resources Research,2011,20(2):95-101.
- [3]毛先成,邹品娟,曹芳,等.GIS支持下的线性回归证据权法扩展及成矿预测[J].测绘科学,2013,38(3):18-21.
- [4]LINDSAY M D,BETTS P G,AILLERES L.Data Fusion and Porphyry Copper Prospectivity Models,Southeastern Arizona[J].Ore Geology Reviews,2014,61(9):120-140.
- [5]HARRIS D V,PAN G.Mineral Favorability Mapping:a Comparison of Artificial Neural Networks,Logistic Regression,and Discriminant Analysis[J].Natural Resources Research,1999,8(2):93-109.
- [6]阴江宁,肖克炎.Hopfield神经网络在矿产资源评价中的应用——以新疆东天山铜镍硫化物矿床为例[J].地球物理学进展,2012,27(4):1708-1716.
- [7]BEHNIA P.Application of Radial Basis Functional Link Networks to Exploration for Proterozoic Mineral Deposits in Central Iran[J].Natural Resources Research,2007,16(2):147-155.
- [8]VAPNIK V N.The Nature of Statistical Learning Theory[M].New York:Springer Verlag,1995.
- [9]陆波,尉询楷,毕笃彦.支持向量机在分类中的应用[J].中国图象图形学报,2005,10(8):1029-1035.
- [10]原立峰.基于SVM的泥石流危险度评价研究[J].地理科学,2007,27(2):296-300.
- [11]ZUO R,CARRANZA E J M.Support Vector Machine:a Tool for Mapping Mineral Prospectivity[J].Computers&Geosciences,2011,37(12):1967-1975.
- [12]ABEDI M,NOROUZI G H.Support Vector Machine for Multi-classification of Mineral Prospectivity Areas[J].Computers&Geosciences,2012,46(3):272-283.
- [13]RODRIGUEZ-GALIANO V,SANCHEZ-CASTILLO M,CHICA-OLMO M.Machine Learning Predictive Models for Mineral Prospectivity:an Evaluation of Neural Networks,Random Forest,Regression Trees and Support Vector Machines[J].Ore Geology Reviews,2015:1-15.
- [14]邓乃扬,田英杰.数据挖掘中的新方法:支持向量机[M].北京:科学出版社,2004.