超高阶地球重力场参数快速赋值与实现Fast assignment and implementation of ultra-high degree Earth's gravity field parameters
李伟,刘站科,蒋涛
摘要(Abstract):
随着地球重力场模型逐渐向超高阶次发展,如何利用超高阶重力场模型快速、精确地计算地球重力场参数成为重要问题。文章给出了利用位系数计算地球外部空间任意点位处重力场参数的数学模型和详细算法,采用比例因子法实现2190阶次缔合勒让德函数的稳定递推计算;并基于VS2008平台开发了重力场参数快速赋值软件。最后利用EGM2008重力场模型和实测GPS水准数据验证了算法、软件的可靠性与效率。
关键词(KeyWords): 重力场;超高阶;勒让德函数;快速赋值
基金项目(Foundation): 国家自然科学基金(41204007,41204008);; 国家测绘地理信息局基础测绘科技项目-国家科技支撑计划课题(2012BAB16B01);; 地理空间信息工程国家测绘地理信息局重点实验室开放基金(201309)
作者(Author): 李伟,刘站科,蒋涛
DOI: 10.16251/j.cnki.1009-2307.2014.12.008
参考文献(References):
- [1]C C Tscherning,R H Rapp,C Goad.A Comparison of Methods for Computing Gravimetric Quantities from High Degree Spherical Harmonic Expansions[J].Manuscripta Geodectica,1983,8:249-272.
- [2]R H Rapp.A Fortran Program for the Computation of Gravimetric Quantities from High Degree Spherical Harmonic Expansions[R].Department of Geodetic Science and Surveying.The Ohio State University,1982,Report No.334:Columbus,22.
- [3]S A Holmes,W E Featherstone.A unified approach to the clenshaw summation and the recursive computation of very high degree and order normalized associated legendre functions[J].Journal of Geodesy,2002,76(5):279-299.
- [4]苏勇,范东明,游为,吴学文.完全正常化缔合Legendre函数及其导数计算的综合分析[J].测绘科学技术学报,2011,28(6):416-420.
- [5]W A Heiskanen,H Morittz.Physical Geodesy[M].San Francisco:Freeman,1967.
- [6]李建成,陈俊勇,宁津生,等.地球重力场逼近理论与中国2000似大地水准面的确定[M].武汉:武汉大学出版社,2003.
- [7]C Rizos.An efficient computer technique for the evaluation of geopotential from spherical harmonic models[J].Aust J Geod Photogram Surv,1979,31:161-169.
- [8]R H Rapp.Use of potential coefficient models for geoid undulation determinations using a spherical harmonic representation of the height anomaly/geoid undulation difference[J].Journal of Geodesy,1997,71:282-289.
- [9]王建强,赵国强,朱广彬.常用超高阶次缔合勒让德函数计算方法对比分析[J].大地测量与地球动力学,2009,29(2):126-130.
- [10]吴星,刘雁雨.多种超高阶次缔合勒让德函数计算方法的比较[J].测绘科学技术学报,2006,23(3):188-191.
- [11]M V BELIKOV.Spherical Harmonic Analysis and Synthesis with the Use of Colunm-Wise Recurrence Relations[J].Mamuscripta Geodaetica,1991,16:384-410.
- [12]JEKELI C,LEE J K,KWON J H.On the computation and approximation of ultra-high degree spherical harmonic Series[J].Journal of Geodesy,2007,81(9):603-615.
- [13]OVERTON M L.Numerical Computing with IEEE Floating Point Arithmetic[M].Philadelphia,SIAM,2001.
- [14]张永波,等.Visual C++2008完全学习手册[M].北京:清华大学出版社,2011.
- [15]N K PAVLIS,S A HOLMES,S C KENYON,et al.Earth gravitational Model 2008(EGM2008)-WGS 84version[EB/OL〗.http://earth-info.Nima.mil/Grad G.