综合多特征的极化SAR图像建筑物U-Net分类方法U-Net classification of buildings based on multi-feature synthesis in polarimetric SAR images
李梅,沈麒凯,陈启浩,刘修国
摘要(Abstract):
针对合成孔径雷达(SAR)图像不同类型建筑物的区分问题,该文提出了一种基于U-Net的极化SAR图像建筑物分类方法。该方法将极化SAR数据的Pauli分解参数、规范化圆极化相关系数和G~0统计纹理参数作为U-Net的输入,建立建筑物分类U-Net模型,同时考虑建筑物的高度和单体面积的情况下,将建筑物分为高层、中层、低层小面积、低层厂房类大面积建筑物4类。对武汉市城区GF-3极化SAR数据的各类建筑物分类精度均在80%以上,最高达94.2%。该方法与仅使用单类别特征的U-Net网络方法以及卷积神经网络方法相比,分类结果更完整、建筑边界更准确,也更适合于复杂中心城区的不同类型建筑物的分类。
关键词(KeyWords): 极化SAR;U-Net网络;分类;建筑物;深度学习
基金项目(Foundation): 国家自然科学基金项目(41771467)
作者(Author): 李梅,沈麒凯,陈启浩,刘修国
DOI: 10.16251/j.cnki.1009-2307.2022.09.018
参考文献(References):
- [1]吴文福,邵振峰,杨会巾.全极化SAR图像的建筑物提取研究[J].测绘科学,2019,44(11):143-147.(WUWenfu,SHAO Zhenfeng,YANG Huijin.Extraction of buildings from full-polarimetric SAR imagery[J].Science of Surveying and Mapping,2019,44(11):143-147.)
- [2]王贺,张路,徐金燕,等.面向城市地物分类的L波段SAR影像极化特征提取与分析[J].武汉大学学报(信息科学版),2012,37(9):1068-1072.(WANG He,ZHANG Lu,XU Jinyan,et al.Evaluation of L-band polarimetric SAR images for urban land cover classification[J].Geomatics and Information Science of Wuhan University,2012,37(9):1068-1072.)
- [3]陈启浩,聂宇靓,李林林,等.极化分解后多纹理特征的建筑物损毁评估[J].遥感学报,2017,21(6):955-965.(CHEN Qihao,NIE Yuliang,LI Linlin,et al.Buildings damage assessment using texture features of polarization decomposition components[J].Journal of Remote Sensing,2017,21(6):955-965.)
- [4]刘修国,姜萍,陈启浩,等.利用改进三分量分解与Wishart分类的极化SAR图像建筑提取方法[J].测绘学报,2015(2):206-213.(LIU Xiuguo,JIANG Ping,CHEN Qihao,et al.Buildings extraction from polarmetric SAR image using improved three-component decomposition and Wishart classification[J].Acta Geodaetica et Cartographica Sinica,2015,44(2):206-213.)
- [5]MORIYAMA T,YAMAGUCHI Y,URATSUKA S,et al.A study on polarimetric correlation coefficient for feature extraction of polarimetric SAR data[J].IEICETransactions on Communications,2005,88(6):2353-2361.
- [6]AINSWORTH T L,SCHULER D L,LEE J S.Polarimetric SAR characterization of man-made structures in urban areas using normalized circular-pol correlation coefficients[J].Remote Sensing of Environment,2008,112(6):2876-2885.
- [7]ZHAI Wei,SHEN Huanfeng,HUANG Chunlin,et al.Fusion of polarimetric and texture information for urban building extraction from fully polarimetric SARimagery[J].Remote Sensing Letters,2016,7(1):31-40.
- [8]FREITAS C C,FRERY A C,CORREIA A H.The polarimetricgdistribution for SAR data analysis[J].Environmetrics,2005,16(1):13-31.
- [9]LI Linlin,LIU Xiuguo,CHEN Qihao,et al.Building damage assessment from PolSAR data using texture parameters of statistical model[J].Computers&Geosciences,2018,113:115-126.
- [10]AZMEDROUB B,OUARZEDDINE M,SOUISSI B.Extraction of urban areas from polarimetric SAR imagery[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2016,9(6):2583-2591.
- [11]姜萍,刘修国,陈启浩,等.利用多尺度SVM-CRF模型的极化SAR图像建筑物提取[J].遥感技术与应用,2017,32(3):475-482.(JIANG Ping,LIU Xiuguo,CHEN Qihao,et al.A multi-scale SVM-CRF model for buildings extraction from polarimetric SAR images[J].Remote Sensing Technology and Application,2017,32(3):475-482.)
- [12]DU P J,SAMAT A,WASKE B,et al.Random forest and rotation forest for fully polarized SAR image classification using polarimetric and spatial features[J].ISPRS Journal of Photogrammetry and Remote Sensing,2015,105:38-53.
- [13]DE S,BRUZZONE L,BHATTACHARYA A,et al.Anovel technique based on deep learning and a synthetic target database for classification of urban areas in PolSAR data[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2017,11(1):154-170.
- [14]ZHOU Yu,WANG Haipeng,XU Feng,et al.Polarimetric SAR image classification using deep convolutional neural networks[J].IEEE Geoscience and Remote Sensing Letters,2016,13(12):1935-1939.
- [15]ZHANG Zhimian,WANG Haipeng,XU Feng,et al.Complex-valued convolutional neural network and its application in polarimetric SAR image classification[J].IEEE Transactions on Geoscience and Remote Sensing,2017,55(12):7177-7188.
- [16]ZHANG Ce,PAN Xin,LI Huapeng,et al.A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification[J].ISPRS Journal of Photogrammetry and Remote Sensing,2018,140:133-144.
- [17]WU Wenjin,LI Hailei,LI Xinwu,et al.PolSAR image semantic segmentation based on deep transfer learning:realizing smooth classification with small training sets[J].IEEE Geoscience and Remote Sensing Letters,2019,16(6):977-981.