大规模空中三角测量的智能分区与合并算法Intelligent partitioning and merging of large-scale aerial triangulation
骆奇峰,丁华祥,鲁路平
摘要(Abstract):
针对空中三角测量的处理时间随图像数量的增加呈指数级增长,处理大规模数据集需要大量时间的问题,该文提出了一种测区智能分区与合并算法。该算法可以自动地将无序的图像集分割成若干个有重叠的子集,将每个子集可以并行处理,根据重叠图像的连接点,将各个子集的重建结果合并在一起。实验结果表明,该算法不仅保证了时效性,同时流程也简单,处理速度很快。在一个有10处理节点的集群系统中,该算法成功地处理了大规模航空影像数据集,重建的时间效率和精度满足实际生产要求。与不分区进行比较,时间可以节省至少一半。
关键词(KeyWords): 空三分区算法;空三合区算法;运动恢复结构;矩阵带宽缩减;空三并行处理
基金项目(Foundation):
作者(Author): 骆奇峰,丁华祥,鲁路平
DOI: 10.16251/j.cnki.1009-2307.2022.04.013
参考文献(References):
- [1]OZYESIL O,VORONINSKI V,BASRI R,et al.Asurvey of structure from motion[EB/OL].[2021-03-06].https:∥arxiv.org/abs/1701.08493.
- [2]吴子敬,邓非.SFM的倾斜航空影像空中三角测量[J].测绘科学,2017,42(11):97-101.(WU ZiJing,DENG Fei.Aerial triangulation of oblique aerial images based on SFM[J].Science of Surveying and Mapping,42(11):97-101.)
- [3]薛武,张永生,赵玲,等.增量式SFM与POS辅助光束法平差精度比较[J].测绘学报,2017,46(2):198-207.(XUE Wu,ZHANG Yongsheng,ZHAO Ling,et al.Compareison of the accuracy of incremental SFM with POS-aided bundle adjustment[J].Acta Geodaetica et Cartographica Sinica,2017,46(2):198-207.)
- [4]徐柳华,郑先伟,唐敏,等.基于近景摄影测量的钱塘江涌潮三维观测技术研究[J].测绘地理信息,2020,4(7):37-39.(XU Liuhua,ZHENG Xianwei,TANGMin,et al.Research on three dimensional observation echnology for Qiantang Bore[J].Journal of Geomatics,2020,4(7):37-39.)
- [5]DOUTERLOIGNE K,GAUTAMA S,PHILIPS W.Speeding up structure from motion on large scenes using parallelizable partitions[C]∥Advanced Concepts for Intelligent Vision Systems.[S.l.]:[s.n.],2010:13-21.
- [6]ZHU S Y,SHEN T W,ZHOU L,R,et al.Parallel structure from motion from local increment to global averaging[EB/OL].[2017-02-28].https:∥arxiv.org/abs/1702.08601v3.
- [7]ZHU Siyu,ZHANG Runze,ZHOU Lei,et al.Very large-scale global SfM by distributed motion averaging[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA:IEEE,2018:4568-4577.
- [8]ZHANG Runze,ZHU Siyu,FANG Tian,et al.Distributed very large scale bundle adjustment by global camera consensus[C]∥2017IEEE International Conference on Computer Vision.Venice,Italy:IEEE,2017:29-38.
- [9]DHILLON I S,GUAN Y Q,KULIS B.Weighted graph cuts without eigenvectors a multilevel approach[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(11):1944-1957.
- [10]DJIDJEV H N,ONUS M.Scalable and accurate graph clustering and community structure detection[J].IEEETransactions on Parallel and Distributed Systems,2013,24(5):1022-1029.
- [11]DHILLON I S,GUAN Y Q,KULIS B.Kernel k-means:spectral clustering and normalized cuts[EB/OL].(2012-09-30)[2021-03-06].https:∥dl.acm.org/doi/epdf/10.1145/1014052.1014118.
- [12]PARRILA E,RUESCAS A,SOLVES J A,et al.3Dreality modeling software-contextcapture[EB/OL].[2021-03-06].https:∥www.bentley.com/en/products/product-line/reality-modeling-software/contextcapture.
- [13]AGISOFT LLC.Agisoft metashape[EB/OL].[2021-03-06].https:∥www.agisoft.com/.
- [14]BERNARDES J A B,DE OLIVEIRA S L G.A systematic review of heuristics for profile reduction of symmetric matrices[J].Procedia Computer Science,2015,51:221-230.
- [15]KARYPIS G,KUMAR V.A fast and high quality multilevel scheme for partitioning irregular graphs[J].SIAMJournal on Scientific Computing,1998,20(1):359-392.
- [16]ESKOARTWORK.Graclus software[EB/OL].[2021-03-06].http:∥www.cs.utexas.edu/users/dml/Software/graclus.html.