极化SAR影像深度学习分类方法对比研究Comparisons of polarimetric SAR image classifiers based on deep learning
邓少平,孙盛
摘要(Abstract):
针对近年来极化SAR影像深度学习分类研究取得了显著的进展,但仍缺少全面系统的对比分析问题,该文首先讨论了极化SAR处理与分类中常用的深度学习网络结构,然后使用极化SAR分类研究的典型数据集,对多个主要深度学习算法的分类结果进行了对比分析,并对常用极化目标分解在深度学习分类算法中的应用进行了对比。实验表明,各类算法有不同的适用场景,同一场景不同算法的精度有时表现很大的差异。深度网络的选择、网络参数的优化和极化信息的应用依旧是该领域未来重点研究方向。
关键词(KeyWords): 极化雷达;机器学习;深度学习;分类;极化分解
基金项目(Foundation):
作者(Author): 邓少平,孙盛
DOI: 10.16251/j.cnki.1009-2307.2021.07.017
参考文献(References):
- [1] ZHU Xiaoxiang,TUIA D,MOU Lichao,et al.Deep learning in remote sensing:a comprehensive review and list of resources[J].IEEE Geoscience and Remote Sensing Magazine,2017,5(4):8-36.
- [2] 聂祥丽,黄夏渊,张波,等.极化合成孔径雷达图像相干斑抑制和分类方法综述[J].自动化学报,2019,45(8):1419-1438.(NIE Xiangli,HUANG Xiayuan,ZHANG Bo,et al.Review on PolSAR image speckle reduction and classification methods[J].Acta Automatica Sinica,2019,45(8):1419-1438.)
- [3] ZHANG Liangpei,ZHANG Lefei,DU Bo.Deep learning for remote sensing data:a technical tutorial on the state of the art[J].IEEE Geoscience and Remote Sensing Magazine,2016,4(2):22-40.
- [4] 王俊,郑彤,雷鹏,等.深度学习在雷达中的研究综述[J].雷达学报,2018,7(4):395-411.(WANG Jun,ZHENG Tong,LEI Peng,et al.Study on deep learning in radar[J].Journal of Radars,2018,7(4):395-411.)
- [5] 潘宗序,安全智,张冰尘.基于深度学习的雷达图像目标识别研究进展[J].中国科学:信息科学,2019,49(12):1626-1639.(PAN Zongxu,AN Quanzhi,ZHANG Bingchen.Progress of deep learning-based target recognition in radar images[J].Scientia Sinica:Informationis,2019,49(12):1626-1639.)
- [6] 陶臣嵩.基于旋转域特征和深度CNN的极化SAR检测与分类研究[D].长沙:国防科技大学,2017:78-80.(TAO Chensong.Research of polarimetric SAR detection and classification based on features in rotation domain and deep CNN[D].:Changsha:National University of Defense Technology,2017:78-80.)
- [7] 滑文强.小样本下的极化SAR图像分类问题研究[D].西安:西安电子科技大学,2018:99-101.(HUA Wenqiang.Study on polarimetric SAR images classification with small samples[D].Xi’an:Xidian University,2018:99-101.)
- [8] 金亚秋.多模式遥感智能信息与目标识别:微波视觉的物理智能[J].雷达学报,2019,8(6):710-716.(JIN Yaqiu.Multimode remote sensing intelligent information and target recognition:Physical intelligence of microwave vision[J].Journal of Radars,2019,8(6):710-716.)
- [9] 刘芳.基于深度学习的极化SAR图像分类和变化检测[D].西安:西安电子科技大学,2017:67-98.(LIU Fang.PolSAR image classification and change detection based on deep learning[D].Xi’an:Xidian University,2017:67-98.)
- [10] SHELHAMER E,LONG J,DARRELL T.Fully convolutional networks for semantic segmentation[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence.[S.l.]:IEEE,640-651.
- [11] ZHANG Zhimian,WANG Haipeng,XU Feng,et al.Complex-valued convolutional neural network and its application in polarimetric SAR image classification[J].IEEE Transactions on Geoscience and Remote Sensing,2017,55(12):7177-7188.
- [12] ZHOU Yu,WANG Haipeng,XU Feng,et al.Polarimetric SAR image classification using deep convolutional neural networks[J].IEEE Geoscience and Remote Sensing Letters,2016,13(12):1935-1939.
- [13] GAO Fei,HUANG Teng,WANG Jun,et al.Dual-branch deep convolution neural network for polarimetric SAR image classification[J].Applied Sciences,2017,7(5):447.
- [14] CHEN Siwei,WANG Xuesong,SATO M.Uniform polarimetric matrix rotation theory and its applications[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(8):4756-4770.
- [15] CHEN Siwei,TAO Chensong.PolSAR image classification using polarimetric-feature-driven deep convolutional neural network[J].IEEE Geoscience and Remote Sensing Letters,2018,15(4):627-631.
- [16] GOODFELLOW I,BENGIO Y,and COURVILLE A.Deep learning[EB/OL].(2018-11-28)[2020-03-17].http://www.deeplear ningbook.org.
- [17] LIU Weibo,WANG Zidong,LIU Xiaohui,et al.A survey of deep neural network architectures and their applications[J].Neurocomputing,2017,234:11-26.
- [18] HU Yuanyuan,FAN Jianchao,WANG Jun.Classification of PolSAR images based on adaptive nonlocal stacked sparse autoencoder[J].IEEE Geoscience and Remote Sensing Letters,2018,15(7):1050-1054.
- [19] ZHANG Lu,MA Wenping,ZHANG Dan.Stacked sparse autoencoder in PolSAR data classification using local spatial information[J].IEEE Geoscience and Remote Sensing Letters,2016,13(9):1359-1363.
- [20] CHEN Wenshuai,GOU Shuiping,WANG Xinlin,et al.Classification of PolSAR images using multilayer autoencoders and a self-paced learning approach[J].Remote Sensing,2018,10(1):110.
- [21] HINTON G E,OSINDERO S,TEH Y W.A fast learning algorithm for deep belief nets[J].Neural Computation,2006,18(7):1527-1554.
- [22] ZOU Qin,NI Lihao,ZHANG Tong,et al.Deep learning based feature selection for remote sensing scene classification[J].IEEE Geoscience and Remote Sensing Letters,2015,12(11):2321-2325.
- [23] LIU Fang,JIAO Licheng,HOU Biao,et al.POL-SAR image classification based on wishart DBN and local spatial information[J].IEEE Transactions on Geoscience and Remote Sensing,2016,54(6):3292-3308.
- [24] GUO Yanhe,WANG Shuang,GAO Chenqiong,et al.Wishart RBM based DBN for polarimetric synthetic radar data classification[C]//2015 IEEE International Geoscience and Remote Sensing Symposium(IGARSS).Milan,Italy.IEEE,2015:1841-1844.
- [25] WANG LEI,XU XIN,DONG HAO,et al.Multi-pixel simultaneous classification of PolSAR image using convolutional neural networks[J].Sensors:Basel,Switzerland,2018,18(3):E769.
- [26] LI Hengchao,HONG Wen,WU Yirong,et al.On the empirical-statistical modeling of SAR images with generalized gamma distribution[J].IEEE Journal of Selected Topics in Signal Processing,2011,5(3):386-397.
- [27] ZHAO Zhiqiang,GUO Lei,JIA Meng,et al.The generalized gamma-DBN for high-resolution SAR image classification[J].Remote Sensing,2018,10(6):878.
- [28] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[C]//Ghahramani Z,Welling M,Cortes C,et al.Advances in neural information processing systems 27.Montreal:Neural Information Processing Systems Foundation,2014:2672-2680.
- [29] 王万良,李卓蓉.生成式对抗网络研究进展[J].通信学报,2018,39(2):135-148.(WANG Wanliang,LI Zhuorong.Advances in generative adversarial network[J].Journal on Communications,2018,39(2):135-148.)
- [30] PAN Zhaoqing,YU Weijie,YI Xiaokai,et al.Recent progress on generative adversarial networks(GANs):a survey[J].IEEE Access,2019,7:36322-36333.
- [31] 王坤峰,苟超,段艳杰,等.生成式对抗网络GAN的研究进展与展望[J].自动化学报,2017,43(3):321-332.(WANG Kunfeng,GOU Chao,DUAN Yanjie,et al.Generative adversarial networks:the state of the art and beyond[J].Acta Automatica Sinica,2017,43(3):321-332.)
- [32] LIU Fang,JIAO Licheng,TANG Xu.Task-oriented GAN for PolSAR image classification and clustering[J].IEEE Transactions on Neural Networks and Learning Systems,2019,30(9):2707-2719.
- [33] LIU Hongying,MIN Qiang,SUN Chen,et al.Terrain classification with polarimetric SAR based on deep sparse filtering network[C]//2016 IEEE International Geoscience and Remote Sensing Symposium(IGARSS).Beijing,China.IEEE,2016:64-67.
- [34] HOU Biao,KOU Hongda,JIAO Licheng.Classification of polarimetric SAR images using multilayer autoencoders and superpixels[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2016,9(7):3072-3081.
- [35] LV Q,DOU Yong,NIU Xin,et al.Urban land use and land cover classification using remotely sensed SAR data through deep belief networks[J].Journal of Sensors,2015,2015:1-10.
- [36] 张腊梅,段宝龙,邹斌.极化SAR图像目标分解方法的研究进展[J].电子与信息学报,2016,38(12):3289-3297.(ZHANG Lamei,DUAN Baolong,ZOU Bin.Research development on target decomposition method of polarimetric SAR image[J].Journal of Electronics & Information Technology,2016,38(12):3289-3297.)