改进的扩展卡尔曼滤波相位解缠算法Improved extended Kalman filter phase unwrapping algorithm
许华夏,谢先明,谢家朝,曾庆宁
摘要(Abstract):
针对扩展卡尔曼相位解缠(EKFPU)算法对低信噪比干涉图相位解缠精度不高的缺点,该文提出一种将径向基函数(RBF)神经网络和扩展卡尔曼滤波(EKF)算法相结合的干涉合成孔径雷达(InSAR)相位解缠算法。利用RBF神经网络的自适应调整能力和非线性拟合能力对EKF的结果进行调整、补偿,得到高精度的相位解缠结果;结合路径跟踪策略,利用质量图去引导EKF相位解缠,避免穿过误差较大的区域,进一步提高解缠的精度。通过对模拟数据和实测数据的仿真实验,验证了该算法的有效性。
关键词(KeyWords): 相位解缠;扩展卡尔曼滤波;径向基神经网络;路径跟踪
基金项目(Foundation): 国家自然科学基金项目(61461011);; 广西自然科学基金项目(2014GXNSFBA118273);; 广西无线宽带通信与信号处理重点实验室2014—2015年主任基金项目(GXKL061503);; 认知无线电教育部重点实验室主任基金项目
作者(Author): 许华夏,谢先明,谢家朝,曾庆宁
DOI: 10.16251/j.cnki.1009-2307.2018.10.003
参考文献(References):
- [1]王超,张红,刘智.星载合成孔径雷达干涉测量[M].北京:科学出版社,2002.(WANG Chao,ZHANG Hong,LIU Zhi.Spaceborne interferometric synthetic aperture radar[M].Beijing:Science Press,2002.)
- [2]GOLDSTEIN R M,ZEBKER H A,WERNER C L.Satellite radar interferometry:two-dimensional phase unwrapping[J].Radio Science,1988,23(4):713-720.
- [3]XU W,CUMMING I.A region-growing algorithm for InSAR phase unwrapping[J].IEEE Transactions on Geoscience&Remote Sensing,1999,37(1):124-134.
- [4]GHIGLIA D C,ROMERO L A.Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods[J].Journal of the Optical Society of America A,1994,11(1):107-117.
- [5]PRITT M D.Phase unwrapping by means of multigrid techniques for interferometric SAR[J].IEEE Transactions on Geoscience&Remote Sensing,1996,34(3):728-738.
- [6]COLLARO A,FRANCESCHETTI G,PALMIERI F,et al.Phase unwrapping by means of genetic algorithms[J].Journal of the Optical Society of America A,1998,15(2):407-418.
- [7]HOLGER N,LOFFELD O,ROBERT W.Phase unwrapping using 2D-Kalman filter potential and limitations[C]∥International Geoscience and Remote Sensing Symposium.Piscataway,New Jersey,USA:IEEE,2008:1213-1216.
- [8]ARULAMPALAM M S,MASKELL S,GORDON N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing,2002,50(2):174-188.
- [9]XIE X M,PI Y M,MIN R.An EKF multi-baseline phase unwrapping algorithm[C]∥International Symposium on Intelligent Signal Processing and Communication Systems.Piscataway,New Jersey,USA:IEEE,2010:1-4.
- [10]MOODY J,DARKEN C J.Fast learning in networks of locally-tuned processing units[J].Neural Computation,1989,1(2):281-294.
- [11]谢先明.InSAR及多基线InSAR关键技术研究[D].成都:电子科技大学,2011.(XIE Xianming.Research of key technology of InSAR and multi-baseline InSAR[D].Chengdu:University of Electronic Science and Technology of China,2011.)
- [12]KOKSHENEV I,BRAGA A P.A multi-objective approach to RBF network learning[J].Neurocomputing,2008,71(7/8/9):1203-1209.
- [13]HORNIK K,STINCHCOMBE M,WHITE H.Multilayer feedforward networks are universal approximators[J].Neural Networks,1989,2(5):359-366.
- [14]毛健,赵红东,姚婧婧.人工神经网络的发展及应用[J].电子设计工程,2011,19(24):62-65.(MAO Jian,ZHAO Hongdong,YAO Jingjing.Application and prospect of artificial neural network[J].Electronic Design Engineering,2011,19(24):62-65.)
- [15]张顶学,刘新芝,关治洪.RBF神经网络算法及其应用[J].石油化工高等学校学报,2007,20(3):86-88.(ZHANG Dingxue,LIU Xinzhi,GUAN Zhihong.Radial basis function neural network algorithm and its application[J].Journal of Petrochemical Universities,2007,20(3):86-88.)
- [16]郭文强,秦志光.基于RBF神经网络辅助的自适应UKF算法[J].计算机应用,2009,29(3):858-861.(GUO Wenqiang,QIN Zhiguang.Research on RBFNNaided adaptive UKF algorithm[J].Journal of Computer Applications,2009,29(3):858-861.)