一种改进BP神经网络的接收信号强度测距算法A ranging algorithm of received signal strength based on improved BP neural network
余振宝,卢小平,刘英,余培冬,张冬梅
摘要(Abstract):
针对传统路径损耗模型测距过多依赖于环境参数A和n的问题,该文在分析BP神经网络模型的基础上,引进了基于蚁群算法优化BP神经网络模型(ACO-BP)的信号衰减模型。利用蚁群算法寻找最优的初始阈值和权值,并将其赋予BP神经网络;将信号强度作为输入值,距离作为输出值对ACO-BP网络进行训练;利用Matlab进行模拟仿真实验。实验结果表明:ACO-BP神经网络比BP神经网络预测距离值的精度平均提高了75%,该算法可应用于无线网络室内定位技术中。
关键词(KeyWords): 路径损耗模型;ACO-BP神经网络;RSSI;室内定位
基金项目(Foundation): 2016年国家重点研发计划项目(2016YFC0803103);; 河南省高校创新团队支持计划项目(14IRTSTHN026)
作者(Author): 余振宝,卢小平,刘英,余培冬,张冬梅
DOI: 10.16251/j.cnki.1009-2307.2020.11.008
参考文献(References):
- [1] 李维,黄鹤,罗德安.改进粒子滤波器的室内地磁匹配精度研究[J].测绘科学,2018,43(7):109-114.(LI Wei,HUANG He,LUO Dean.Indoor geomagnetic matching accuracy analysis based on improved particle filter algorithm[J].Science of Surveying and Mapping,2018,43(7):109-114.)
- [2] KWON O H,SONG H J,PAPK S.The effects of stitching orders in patch-and-stitch WSN locatization algorithms[J].IEEE Transactions on Parallel and Distributed Systems,2009,20(9):1380-1391.
- [3] KARTHICK N,PRASHANTH K,VENKATRAMAN K,et al.Location estimation using RSSI and application of extended Kalman filter in wireless sensor networks[C]//Proceedings of the 2009 International Conference On Advanced Computer Control.Washington,DC,USA:IEEE Computer Society,2009:337-341.
- [4] 吴帮,花向红,邱卫宁,等.同构设备之间RSSI系统偏差对WiFi定位的影响及修正研究[J].测绘通报,2016(2):69-71,90.(WU Bang,HUA Xianghong,QIU Weining,et al.Effect of isomorphic devices’RSSI system deviation to WiFi positioning and modification research[J].Bulletin of Surveying and Mapping,2016(2):69-71,90.)
- [5] 孙继平,李晨鑫.基于WIFI和计时误差抑制的TOA煤矿井下目标定位方法[J].煤炭学报,2014,39(1):192-197.(SUN Jiping,LI Chenxin.TOA underground coal mine target position method based on WiFi and timing error suppression[J].Journal of China Coal Society,2014,39(1):192-197.)
- [6] CONG L,ZHUANG W H.Hybrid TDOA/AOA mobile user location for wideband CDMA celluar system[J].IEEE Transactions on Wireless Communications,2002,18(3):439-447.
- [7] 高仁强,张晓盼,熊艳.模糊数学的WiFi室内定位算法[J].测绘科学,2016,41(40):142-148.(GAO Renqiang,ZHANG Xiaopan,XIONG Yan.A WiFi indoor positioning method based on fuzzy algorithm[J].Science of Surveying and Mapping,2016,41(40):142-148.)
- [8] 路泽忠,卢小平,付睢宁,等.一种改进的RSSI加权质心定位算法[J].测绘科学,2019,44(1):26-31.(LU Zezhong,LU Xiaoping,FU Suining,et al.An improved weighted centroid indoor positioning algorithm based on RSSI[J].Science of Surveying and Mapping,2019,44(1):26-31.)
- [9] 李丽娜,梁德骕,马俊,等.基于灰色-RBF神经网络的传播损耗模型训练[J].计算机应用与软件,2016,33(8):136-140.(LI Lina,LIANG Desu,MA Jun,et al.Propagation loss model training algorithm based on grey-RBF neural network[J].Computer Applications and Software,2016,33(8):136-140.)
- [10] 邹自明,何文斌,杨小平.基于LMBP神经网络的无线室内定位方法[J].桂林理工大学学报,2018,38(3):574-578.(ZOU Ziming,HE Wenbin,YANG Xiaoping.Wireless indoor positioning method based on LMBP neural network[J].Journal of Guilin Univeristy of Technology,2018,38(3):574-578.
- [11] 李英玉,陈刚.基于人工神经网络的RSSI测距的牛顿定位算法[J].仪表技术与传感器,2017(8):122-126.(LI Yingyu,CHEN Gang.Newton localization algorithm based on artificial neural network RSSI ranging[J].Instrument Technique and Sensor,2017(8):122-126.)
- [12] 赵珊,付敬奇.基于粒子滤波模型的RSSI测距优化研究[J].电子测量技术,2016,39(3):122-126.(ZHAO Shan,FU Jingqi.Study of RSSI ranging optimization techniques based on particle filter model[J].Electornic Measurement Technology,2016,39(3):122-126.)
- [13]费扬,杜庆治.基于BP神经网络模型的RSSI测距方法研究[J].电波科学学报,2018,33(2):195-201.(FEI Yang,DU Qingzhi.RSSI ranging method based on BP neural network model[J].Chinese Journal of Radio,2018,33(2):195-201.)
- [14]张会清,石晓伟,邓贵华,等.基于BP神经网络和泰勒级数的室内定位算法研究[J].电子学报,2012,40(9):1876-1879.(ZHANG Huiqing,SHI Xiaowei,DENG Guihua,et al.Research on indoor location technology based on back propagation neural network and Taylor series[J].Acta Electronica Sinica,2012,40(9):1876-1879.)
- [15]刘宏立,周登,徐琨,等.基于RSSI的自适应权重定位算法[J].传感器与微系统,2017,36(3):140-143.(LIU Hongli,ZHOU Deng,XU Kun,et al.Adaptive weighted localization algorithm based on RSSI[J].Transducer and Microsystem Technologies,2017,36(3):140-143.)
- [16]徐涵,杨健,王星尔,等.BP神经网络在隐框玻璃幕墙脱胶损伤识别中的应用[J].硅酸盐学报,2019,47(8):1-7.(XU Han,YANG Jian,WANG Xinger,et al.Application of back propapation neural network on debonding prediction of glass curtain walls with concealed frame[J].Journal of the Chinese Ceramic Society,2019,47(8):1-7.)
- [17]吴兴邦,文尚胜,华珺.基于蚁群算法的室内可见光高精度三维定位系统[J].光子学报,2017,46(12):181-194.(WU Xingbang,WEN Shangsheng,HUA Jun.High precision 3D positioning system design using visible light communication based on ant colony algorithm[J].Acta Photonica Sinica,2017,46(12):181-194.)
- [18]唐菁敏,周旋,张伟,等.基于改进型遗传蚁群算法的TDOA多点定位研究[J].通信技术,2018,51(7):1575-1584.(TANG Jingmin,ZHOU Xuan,ZHANG Wei,et al.Multipoint location of TDOA based on improved genetic ant colony algorithm[J].Communications Technology,2018,51(7):1575-1584.)