一种优化高斯过程回归的隧道围岩变形预测方法A deformation prediction method for tunnel surrounding rock based on optimizing Gaussian process regression
谢建雄,鲁铁定
摘要(Abstract):
为准确掌握隧道围岩变形的发展趋势,实现对隧道施工的准确指导,以及规避高斯过程回归(GPR)采用共轭梯度法求取超参数时存在的缺陷,该文提出利用一种改进果蝇优化算法(MFOA)优化GPR,构建MFOA-GPR预测模型。首先,对标准果蝇优化算法(FOA)的味道浓度函数进行修正,拓展求解的范围;同时引入了一个搜索半径动态调整参数,使得算法在迭代寻优过程中动态调节全局搜索能力和局部开发能力;再将改进的果蝇算法直接应用于GPR的超参数寻优。通过两个实际隧道工程算例进行分析和检验,结果表明,MFOA-GPR方法的预测精度最高,多个精度评价指标均优于GPR、FOA-GPR模型,验证了该方法的有效性。
关键词(KeyWords): 高斯过程回归;改进果蝇优化算法;变形预测;隧道工程
基金项目(Foundation): 国家重点研发计划项目(2016YFB0501405,2016YFB0502601-04);; 国家自然科学基金项目(42061077,42064001);; 江西省自然科学基金项目(2017BAB203032)
作者(Author): 谢建雄,鲁铁定
DOI: 10.16251/j.cnki.1009-2307.2021.04.008
参考文献(References):
- [1] 胡达,黄小林,何杰.基于改进灰色理论模型的隧道围岩变形预测[J].公路工程,2017,42(5):72-75,84.(HU Da,HUANG Xiaolin,HE Jie.Prediction of deformation of tunnel surrounding rock based on improved grey theory model[J].Highway Engineering,2017,42(5):72-75,84.)
- [2] 文明,张顶立,房倩,等.隧道围岩变形的非线性自回归时间序列预测方法研究[J].北京交通大学学报,2017,41(4):1-7.(WEN Ming,ZHANG Dingli,FANG Qian,et al.Research on nonlinear auto regressive time series method for predicting deformation of surrounding rock in tunnel[J].Journal of Beijing Jiaotong University,2017,41(4):1-7.)
- [3] 赵洪波.支持向量机在隧道围岩变形预测中的应用[J].岩石力学与工程学报,2005,24(4):649-652.(ZHAO Hongbo.Predicting the surrounding deformations of tunnel using support vector machine[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(4):649-652.)
- [4] 周冠南,孙玉永,贾蓬.基于遗传算法的BP神经网络在隧道围岩参数反演和变形预测中的应用[J].现代隧道技术,2018,55(1):107-113.(ZHOU Guannan,SUN Yuyong,JIA Peng.Application of genetic algorithm based BP neural network to parameter inversion of surrounding rock and deformation prediction[J].Modern Tunnelling Technology,2018,55(1):107-113.)
- [5] 王建民,张锦.基于高斯过程回归的变形智能预测模型及应用[J].武汉大学学报(信息科学版),2018,43(2):248-254.(WANG Jianmin,ZHANG Jin.Deformation intelligent prediction model based on Gaussian process regression and application[J].Geomatics and Information Science of Wuhan University,2018,43(2):248-254.)
- [6] 何志昆,刘光斌,赵曦晶,等.高斯过程回归方法综述[J].控制与决策,2013,28(8):1121-1129,1137.(HE Zhikun,LIU Guangbin,ZHAO Xijing,et al.Overview of Gaussian process regression[J].Control and Decision,2013,28(8):1121-1129,1137.)
- [7] RASMUSSEN C E,WILLIAMS C K.Gaussian processes for machine learning[M].Cambridge,MA:MIT Press,2006.
- [8] 苏国韶,张研,燕柳斌.隧道围岩变形预报的高斯过程机器学习模型[J].桂林理工大学学报,2010,30(4):551-555.(SU Guoshao,ZHANG Yan,YAN Liubin.Deformation forecasting for tunnel rock by Gaussian process machine learning model[J].Journal of Guilin University of Technology,2010,30(4):551-555.)
- [9] 雷鸣.基于高斯过程的变形预测算法研究[D].南昌:东华理工大学,2013.(LEI Ming.Research on deformation prediction algorithm based on Gaussian process[D].Nanchang:East China University of Technology,2013.)
- [10] 徐冲,刘保国,刘开云,等.基于粒子群-高斯过程回归耦合算法的滑坡位移时序分析预测智能模型[J].岩土力学,2011,32(6):1669-1675.(XU Chong,LIU Baoguo,LIU Kaiyun,et al.Intelligent analysis model of landslide displacement time series based on coupling PSO-GPR[J].Rock and Soil Mechanics,2011,32(6):1669-1675.)
- [11] 刘开云,方昱,刘保国,等.隧道围岩变形预测的进化高斯过程回归模型[J].铁道学报,2011,33(12):101-106.(LIU Kaiyun,FANG Yu,LIU Baoguo,et al.Intelligent deformation prediction model of tunnel surrounding rock based on genetic-Gaussian process regression coupling algorithm[J].Journal of the China Railway Society,2011,33(12):101-106.)
- [12] 邱小梦,周世健,王奉伟,等.利用人工鱼群算法优化高斯过程模型及应用分析[J].测绘通报,2018(1):157-160,164.(QIU Xiaomeng,ZHOU Shijian,WANG Fengwei,et al.Optimization of Gaussian process model based on artificial fish school algorithm and its application analysis[J].Bulletin of Surveying and Mapping,2018(1):157-160,164.)
- [13] 徐翔燕.人工鱼群优化算法及其应用研究[D].成都:西南交通大学,2015.(XU Xiangyan.The study of artificial fish swarm optimization algorithm and its application[D].Chengdu:Southwest Jiaotong University,2015.)
- [14] PAN W T.A new fruit fly optimization algorithm:taking the financial distress model as an example[J].Knowledge-Based Systems,2012,26:69-74.
- [15] 谢洋洋,吴大鹏,付超,等.基于相空间重构的FOA-GLSSVM深基坑变形预测模型研究[J].大地测量与地球动力学,2018,38(10):1048-1052.(XIE Yangyang,WU Dapeng,FU Chao,et al.Research on deformation prediction model of FOA-GLSSVM deep foundation pit based on phase space reconstruction[J].Journal of Geodesy and Geodynamics,2018,38(10):1048-1052.)
- [16] 王林,吕盛祥,曾宇容.果蝇优化算法研究综述[J].控制与决策,2017,32(7):1153-1162.(WANG Lin,LYU Shengxiang,ZENG Yurong.Literature survey of fruit fly optimization algorithm[J].Control and Decision,2017,32(7):1153-1162.)
- [17] 周昀琦,王奉伟,周世健,等.顾及邻近点变形因素的高斯过程建模及预测[J].测绘科学,2018,43(4):114-121.(ZHOU Yunqi,WANG Fengwei,ZHOU Shijian,et al.Modeling and prediction of Gaussian process considering the deformation factors of adjacent points[J].Science of Surveying and Mapping,2018,43(4):114-121.)
- [18] SHAN D,CAO G H,DONG H J.LGMS-FOA:an improved fruit fly optimization algorithm for solving optimization problems[J].Mathematical Problems in Engineering,2013(7):1256-1271.
- [19] YUAN X,DAI X,ZHAO J,et al.On a novel multi-swarm fruit fly optimization algorithm and its application[J].Applied Mathematics and Computation,2014,233(3):260-271.
- [20] PAN Q K,SANG H Y,DUAN J H,et al.An improved fruit fly optimization algorithm for continuous function optimization problems[J].Knowledge-Based Systems,2014,62:69-83.
- [21] 强跃,李绍红,刘超琼.基于多尺度组合核极限学习机模型的隧道围岩变形预测及应用[J].现代隧道技术,2017,54(6):70-76.(QIANG Yue,LI Shaohong,LIU Chaoqiong.Deformation prediction for a tunnel rock mass based on the multi-scale combination kernel extreme learning machine model[J].Modern Tunnelling Technology,2017,54(6):70-76.)
- [22] 江涛.山区软岩大跨度隧道变形神经网络预测及其工程应用[D].上海:同济大学,2007.(JIANG Tao.Research on deformation prediction of the three-lanes tunnel base on neural network in soft area[D].Shanghai:Tongji University,2007.)