高分雷达与光学影像融合的滨海湿地变化检测Coastal wetland change detection using fusion of high resolution radar and optical images
吴瑞娟,何秀凤
摘要(Abstract):
为提高滨海湿地变化检测的精度,该文以合成孔径雷达(SAR)与光学影像各自优势和互补性为切入点,研究SAR与光学影像数据融合的变化检测新方法。提出了高分SAR与光学影像特征自适应融合方法,选用江苏盐城滨海湿地TerraSAR-X、高分三号SAR影像和资源三号光学影像进行实验。研究结果表明,自适应加权的多特征融合方法优于传统多特征融合方法,虚检率明显降低。相比于传统像元级、对象级、SG-PCAK和SG-RCVA-RF变化检测方法,显著图引导的结合像元级与对象级变化检测方法提高了变化检测精度。
关键词(KeyWords): 遥感变化检测;特征融合;显著性检测;不确定性指数;随机森林;滨海湿地
基金项目(Foundation): 国家自然科学基金项目(41830110,41871203);; 内江师范学院科研资助项目(2019YZ02)
作者(Author): 吴瑞娟,何秀凤
DOI: 10.16251/j.cnki.1009-2307.2020.11.014
参考文献(References):
- [1] 左平,李云,赵书河,等.1976年以来江苏盐城滨海湿地景观变化及驱动力分析[J].海洋学报,2012,34(1):101-108.(ZUO Ping,LI Yun,ZHAO Shuhe,et al.Landscape changes of Jiangsu Yancheng coastal wetlands and their driving forces since 1976[J].Acta Oceanologica Sinica,2012,34(1):101-108.)
- [2] 宫宁,牛振国,齐伟,等.中国湿地变化的驱动力分析[J].遥感学报,2016,20(2):172-183.(GONG Ning,NIU Zhenguo,QI Wei,et al.Driving forces of wetland change in China[J].Journal of Remote Sensing,2016,20(2):172-183.)
- [3] 张继贤.多源遥感数据融合的发展趋势[J].地理信息世界,2011,9(2):18-20.(ZHANG Jixian.The trend of development of multi-source remote sensing data fusion[J].Geomatics World,2011,9(2):18-20.)
- [4] 徐金燕.全极化星载SAR影像辐射校正与城区变化检测[D].武汉:武汉大学,2014:93-132.(XU Jinyan.Urban change detection from spaceborne PolSAR images with radiometric corrections[D].Wuhan:Wuhan University,2014:93-132.)
- [5] 赵妍.建筑物震害遥感影像面向对象变化检测研究[D].北京:中国地质大学,2017:51-87.(ZHAO Yan.The research of building earthquake damage change detection based on object-oriented technology with remote sensing image[D].Beijing:China University of Geosciences,2017:51-87.)
- [6] DEALBAN J D T,CONNETTE G M,OSWALD P,et al.Combined landsat and L-band SAR data improves land cover classification and change detection in dynamic tropical landscapes[J].Remote Sensing,2018,10(2):1-28.
- [7] ZHUANG H F,DENG K Z,FAN H D,et al.Strategies combining spectral angle mapper and change vector analysis to unsupervised change detection in multispectral images[J].IEEE Geoscience and Remote Sensing Letters,2016,13(5):681-685.
- [8] LV P Y,ZHONG Y F,ZHAO J,et al.Change detection based on a multi feature probabilistic ensemble conditional random field model for high spatial resolution remote sensing imagery[J].IEEE Geoscience and Remote Sensing Letters,2016,13(12):1965-1969.
- [9] 杜培军,柳思聪.融合多特征的遥感影像变化检测[J].遥感学报,2012,16(4):663-677.(DU Peijun,LIU Sicong.Change detection from multi-temporal remote sensing images by integrating multiple features[J].Journal of Remote Sensing,2012,16(4):663-677.)
- [10] ZHUANG H F,DENG K Z,YU Y,et al.An approach based on discrete wavelet transform to unsupervised change detection in multispectral images[J].International Journal of Remote Sensing,2017,38(17):4914-4930.
- [11] 张志强,张新长,辛秦川,等.结合像元级和目标级的高分辨率遥感影像建筑物变化检测[J].测绘学报,2018,47(1):102-112.(ZHANG Zhiqiang,ZHANG Xinchang,XIN Qinchuan,et al.Combining the pixel-based and object-based methods for building change detection using high-resolution remote sensing images[J].Acta Geodaetica et Cartographica Sinica,2018,47(1):102-112.)
- [12] CAO G,LI Y P,LIU Y Z,et al.Automatic change detection in high-resolution remote-sensing images by means of level set evolution and support vector machine classification[J].International Journal of Remote Sensing,2014,35(16):6255-6270.
- [13] HUANG X,ZHANG L P,ZHU T T.Building change detection from multi temporal high-resolution remotely sensed images based on a morphological building index[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2014,7(1):105-115.
- [14] XIAO P F,ZHANG X L,WANG D G,et al.Change detection of built-up land:a framework of combining pixel-based detection and object-based recognition[J].ISPRS Journal of Photogrammetry and Remote Sensing,2016,119:402-414.
- [15] 冯文卿,眭海刚,涂继辉,等.联合像元级和对象级分析的遥感影像变化检测[J].测绘学报,2017,46(9):1147-1155,1164.(FENG Wenqing,SUI Haigang,TU Jihui,et al.Remote sensing image change detection based on the combination of pixel-level and object-level analysis[J].Acta Geodaetica et Cartographica Sinica,2017,46(9):1147-1155,1164.)
- [16] 唐侃,邹波,汤振华,等.融合像素级和对象级的遥感图像变化检测方法[J].测绘科学,2017,42(5):106-112.(TANG Kan,ZOU Bo,TANG Zhenhua,et al.A detection method of remote sensing images change by fused pixel-level and object-level[J].Science of Surveying and Mapping,2017,42(5):106-112.)
- [17] ZHENG Y G,JIAO L C,LIU H Y,et al.Unsupervised saliency-guided SAR image change detection[J].Pattern Recognition,2017,61:309-326.
- [18] FENG W Q,SUI H G,CHEN X.Saliency-guided change detection of remotely sensed images using random forest[C]//The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences.[S.l.:s.n.],2018,XLII-3:341-348.
- [19] 郝明.基于空间信息准确性增强的遥感影像变化检测方法研究[D].徐州:中国矿业大学,2015:58-63.(HAO Ming.Change detection methods for remotely sensed images based on enhanced spatial information[D].Xuzhou:China University of Mining and Technology,2015:58-63.)
- [20] DRAGUT L,TIEDE D,LEVICK S R.ESP:a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data[J].International Journal of Geographical Information Science,2010,24(6):859-871.
- [21] DRAGUT L,CSILLIK O,EISANK C,et al.Automated parameterisation for multi-scale image segmentation on multiple layers[J].ISPRS Journal of Photogrammetry and Remote Sensing,2014,88:119-127.