采用二维主成分分析的高光谱影像分类Classification of hyper-spectral imagery based on 2DPCA
杨明,张鹏强,余旭初,刘忠滨,陈雪水
摘要(Abstract):
针对传统的特征提取方法都是基于向量模型,导致处理时维数极高,且极易丢失像素空间信息的问题,该文将二维主成分分析引入高光谱影像特征提取领域,该方法在保持影像原有空间结构信息的前提下,通过多变量线性变换,求取最佳投影方向,不仅能提高同类地物的聚团性、避免分类后地物混淆,还能消除最终分类结果的"麻点"现象,在试验中验证了有效性。
关键词(KeyWords): 向量模型;二维主成分分析;聚团性
基金项目(Foundation): 国家自然科学基金项目(41201477)
作者(Author): 杨明,张鹏强,余旭初,刘忠滨,陈雪水
DOI: 10.16251/j.cnki.1009-2307.2015.06.0029
参考文献(References):
- [1]Pearson K.On Lines and Planes of Closet Fit to Systems of Points in Space[J].Philosphical Magazine,1901(10):339-348.
- [2]Bengio Y,Paienment J F,Vincent P,et al.Out-of-sample Extensions for LLE,Isomap,MDS,Eigenmaps and Spectral Clustering[J].Advances in Neural Information Processing System,2004(16):177-184.
- [3]Turk M,Pentland A.Eigenfaces for Recognition[J].Journal of Cognitive Neuroscience,1991,3(1):71-86.
- [4]Yang J,Zhang D,Frangi A F.Two-dimensional PCA:a New Approach to Appearance-based Face Representation and Recognition[C]//IEEE Transactions on PAMI,2004,26(1):131-137.
- [5]张生亮,杨静宇.2DPCA及2DLDA相关研究综述[J].世界科技研究与发展,2008,30(3):286-289.
- [6]Liu Ke,Cheng Yongqiang,Yang Jingyu.A Lgebraic Feature Extraction for Image Recognition Based on an Optinal Discriminant Crierion[J].Pattern Recognition,1993,26(6):903-911.
- [7]程正东,章毓晋,樊祥.2DPCA在图像特征提取中优于PCA的判定条件[J].工程数学学报,2009,26(6):951-961.
- [8]姚力群,陶卿.分类问题的一种流形学习算法[J].模式识别与人工智能,2005,15(5):541-545.
- [9]Roweis S T,Saul L K.Nonlinear Dimensionality Reduction by Locally Linear Embedding[J].Science,2000,290(5500):2323-2326.
- [10]Seung H S,Lee D D.The Manifold Ways of Perception[J].Science,2000,290(5500):2268-2269.
- [11]Chang C I.Spectral Information Divergence for Hyperspectral Image Analysis[J].Journal of Cognitive Neuroscience,2002,4(3):1211-1214.
- [12]杨明.面向分类的高光谱影像特征提取技术研究[D].郑州:信息工程大学,2012:49-59.