一种景观照片注意力土地利用语义获取方法An attention-based method for parsing landscape photo’s land use semantic
徐世武,李亭谕,白晓飞,吴瀚
摘要(Abstract):
针对国土调查实地举证中,照片数量巨大、内容丰富、语义复杂,依靠人工按照土地利用分类标准解译费时费力且主观性过强的问题,该文提出一种基于注意力的照片土地利用场景语义深度学习解析方法,自动提取照片注意力区(主场景)的土地利用语义和分布信息。实验表明,该方法能够实现自然场景照片土地利用语义包的快速提取,成功应用于江夏区国土调查工作,为全国国土调查智能化提供了技术支撑。
关键词(KeyWords): 显著式注意力;显著性语义解析;深度估计网络;语义分割;深度学习
基金项目(Foundation):
作者(Author): 徐世武,李亭谕,白晓飞,吴瀚
DOI: 10.16251/j.cnki.1009-2307.2021.12.028
参考文献(References):
- [1] 徐世武,曾珏,张诗慧,等.一种深度卷积神经网络土地利用场景照片的分类方法[J].测绘通报,2020(2):24-28.(XU Shiwu,ZENG Jue,ZHANG Shihui,et al.A method of deep convolutional neural network photo classification for landuse scenes[J].Bulletin of Surveying and Mapping,2020(2):24-28.)
- [2] 金兵兵,刘洋,何华贵.面向精细化管理的第三次全国国土调查技术模式探讨[J].中国土地,2020(10):49-50.(JIN Bingbing,LIU Yang,HE Huagui.Exploring the technical model of the third national land survey for refined management[J].China Land,2020(10):49-50.)
- [3] WANG W,LAI Q,FU H,et al.Salient object detection in the deep learning era:an in-depth survey[J/OL].[2021-10-19].https://xueshu.baidu.com/usercenter/paper/show?paperid=1c0f0rc0a33y0290 6b6a0jt0qq791157&site=xueshu_se.
- [4] CONG Runmin,LEI Jianjun,FU Huazhu,et al.Review of visual saliency detection with comprehensive information[J].IEEE Transactions on Circuits and Systems for Video Technology,2019,29(10):2941-2959.
- [5] 王文冠,沈建冰,贾云得.视觉注意力检测综述[J].软件学报,2019,30(2):416-439.(WANG Wenguan,SHEN Jianbing,JIA Yunde.Review of visual attention detection[J].Journal of Software,2019,30(2):416-439.)
- [6] 张晋.基于局部感知的场景图像识别[D].合肥:合肥工业大学,2019.(ZHANG Jin.Research on scene recognition based on local perception[D].Hefei:Hefei University of Technology,2019.)
- [7] HU Jie,SHEN Li,ALBANIE S,et al.Squeeze-and-excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(8):2011-2023.
- [8] WOO S,PARK J,LEE J Y,et al.CBAM:convolutional block attention module[C/OL].[2021-10-19].https://xueshu.baidu.com/usercenter/paper/show?paperid=2b84ef225535579f3bbc42cf4d5c04c6&site=xueshu_se&hitarticle=1.
- [9] LIU Zhigang,DU Juan,WANG Mei,et al.ADCM:attention dropout convolutional module[J].Neurocomputing,2020,394:95-104.
- [10] 邱锡鹏.《神经网络与深度学习》[J].中文信息学报,2020,34(7):4.(QIU Xipeng.Neural networks and deep learning[J].Journal of Chinese Information Processing,2020,34(7):4.)
- [11] BAK C,KOCAK A,ERDEM E,et al.Spatio-temporal saliency networks for dynamic saliency prediction[J].IEEE Transactions on Multimedia,2018,20(7):1688-1698.
- [12] WANG Wenguan,SHEN Jianbing,GUO Fang,et al.Revisiting video saliency:a large-scale benchmark and a new model[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA.:IEEE,2018:4894-4903.
- [13] WU Zhe,SU Li,HUANG Qingming.Cascaded partial decoder for fast and accurate salient object detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Long Beach,CA,USA.:IEEE,2019:3902-3911.
- [14] LIU Tie,YUAN Zejian,SUN Jian,et al.Learning to detect a salient object[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(2):353-367.
- [15] ZHAO Rui,OUYANG Wanli,LI Hongsheng,et al.Saliency detection by multi-context deep learning[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Boston,MA,USA.:IEEE,2015:1265-1274.
- [16] WANG Wenguan,SHEN Jianbing,DONG Xingping,et al.Salient object detection driven by fixation prediction[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA.:IEEE,2018:1711-1720.
- [17] XU Shiwu,ZHANG Shihui,ZENG Jue,et al.A framework for land use scenes classification based on landscape photos[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2020,13:6124-6141.
- [18] GODARD C,AODHA O M,FIRMAN M,et al.Digging into self-supervised monocular depth estimation[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV).Seoul,Korea (South):IEEE,2019:3827-3837.
- [19] HOWARD A,SANDLER M,CHEN Bo,et al.Searching for MobileNetV3[C/OL].[2021-10-19].https://xueshu.baidu.com/usercenter/paper/show?paperid=1p7s0xu06x3c0g60kr5p0cm0kj583530&site=xueshu_se&hitarticle=1.
- [20] BADRINARAYANAN V,KENDALL A,CIPOLLA R.SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J/OL].[2021-10-19].https://xueshu.baidu.com/usercenter/paper/show?paperid=c36a83db859663b69c1c02e36066239e&site=xueshu_se&hitarticle=1.
- [20] BADRINARAYANAN V,KENDALL A,CIPOLLA R.SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495.
- [21] 何立新.单目视觉图像深度测量方法研究[D].合肥:中国科学技术大学,2018.(HE Lixin.Research on depth measurement methods of monocular image[D].Hefei:University of Science and Technology of China,2018.)
- [22] ZHANG Youmin,CHEN Yimin,BAI Xiao,et al.Adaptive unimodal cost volume filtering for deep stereo matching[J].Proceedings of the AAAI Conference on Artificial Intelligence,2020,34(7):12926-12934.
- [23] LI Z S,LIU X T,CREIGHTON F X,et al.Revisiting stereo depth estimation from a sequence-to-sequence perspective with transformers[EB/OL].[2021-10-19].https://xueshu.baidu.com/usercenter/paper/show?paperid=1g1f0xw0q71b08q0jr2500a0ny528085&site=xueshu_se&hitarticle=1.
- [24] RONNEBERGER O,FISCHER P,BROX T.U-net:convolutional networks for biomedical image segmentation[C]//International Conference on Medical image computing and computer-assisted intervention.Springer,Cham:Switzerland,2015:234-241.
- [25] WOFK D,MA F C,YANG T J,et al.FastDepth:fast monocular depth estimation on embedded systems[C]//2019 International Conference on Robotics and Automation (ICRA).Montreal,QC,Canada:IEEE,2019:6101-6108.