InSAR技术支持下的高速铁路沿线沉降监测与预测Monitoring and prediction of settlement along high speed railway supported by InSAR technology
游洪,米鸿燕,李勇发,王志红,刘岚,熊鹏
摘要(Abstract):
针对盘营铁路专线、哈大铁路专线沿线沉降监测研究较少,采用InSAR技术获取了研究区地表形变信息,还对其进行了相关分析。用SBAS-InSAR对35景Sentinel-1A SAR数据进行处理,获取VV、VH极化下的年均沉降速率及沉降序列;以年均沉降速率为研究对象,进行沿线沉降特征分析及交叉验证;利用小波变换对沉降序列降噪处理,用改进BP神经网络对降噪后沉降序列预测分析。研究结果表明,研究区内高速铁路沿线共监测出6个明显沉降区域,最大沉降速率达50 mm/a;两种极化年均沉降速率具有较高的一致性,降噪处理后的沉降序列更加平滑;改进BP神经网络具有较高的收敛速度,其预测精度有较大提高。
关键词(KeyWords): InSAR;沉降序列;小波变换;BP神经网络预测
基金项目(Foundation): 国家自然科学基金项目(51574242);; 贵州省教育厅自然科学研究项目([2018]071,[2018]405)
作者(Author): 游洪,米鸿燕,李勇发,王志红,刘岚,熊鹏
DOI: 10.16251/j.cnki.1009-2307.2021.07.010
参考文献(References):
- [1] 秦晓琼,杨梦诗,廖明生,等.应用PSInSAR技术分析上海道路网沉降特性[J].武汉大学学报(信息科学版),2016,42(3):171-176.(QIN Xiaoqiong,YANG Mengshi,LIAO Mingsheng,et al.Exploring temporal-spatial characteristics of shanghai road networks settlement with multi-temporal PSInSAR technique[J].Geomatics and Information Science of Wuhan University,2016,42(3):171-176.)
- [2] 曹群,宫辉力,周超凡,等.基于SBAS和IPTA技术的京津冀地区地面沉降监测[J].南京大学学报(自然科学版),2017,46(10):382.(CAO Qun,GONG Huili,ZHOU Chaofan,et al.Monitoring of land subsidence in Beijing-Tianjin-Hebei urban by combination of SBAS and IPTA[J].Journal of Nanjing University(Natural Science Edition),2017,46(10):382.)
- [3] 花梅.高速铁路路基常用沉降变形监测方法浅析[J].铁道标准设计,2014,58(S1):122-125.(HUA Mei.Analysis of common settlement and deformation monitoring methods for high speed railway subgrade[J].Railway Standard Design,2014,58(S1):122-125.)
- [4] ZEBKER H A,GOLDSTEINRM.Topographic mapping from interferometric synthetic aperture radar observations[J].Journal of Geophysical Research:Solid Earth,1986,91(B5):4993-499.
- [5] HOOPER A,BEKAERT D,SPAANS K,et al.Recent advances in SAR interferometry time series analysis for measuring crustal deformation[J].Tectonophysics,2012,515:1-3.
- [6] 张婉婉,柯樱海,邓曾,等.基于多源SAR数据的京津高铁北京段垂向形变监测[J].中国科技论文,2018,13(2):235-240.(ZHANG Wanwan,KE Yinghai,DENG Zeng,et al.Vertical deformation monitoring along Beijing-Tianjin high-speed railway(Beijing section)based on multi-platform SAR data[J].China Sciencepaper,2018,13(2):235-240.)
- [7] 周玉营,陈蜜,宫辉力,等.基于时序InSAR的京津高铁北京段地面沉降监测[J].地球信息科学学报,2017,19(10):1393-1403.(ZHOU Yuying,CHEN Mi,GONG Huili,et al.The subsidence monitoring of Beijing-Tianjin high-speed railway based on PS-InSAR[J].Geo-Information Science,2017,19(10):1393-1403.)
- [8] 刘欢欢,张有全,王荣.京津高铁北京段地面沉降监测及结果分析[J].地球物理学报,2016,59(7):2424-2432.(LIU Huanhuan,ZHANG Youquan,WANG Rong.Monitoring and analysis of land subsidence along the Beijing-Tianjin high-speed railway(Beijing section)[J].Chinese Journal of Geophysics,2016,59(7):2424-2432.)
- [9] 刘东明.D-InSAR技术在高速铁路区域沉降监测中的应用研究[J].铁道勘察,2017,43(1):24-26.(LIU Dongming.Researchon application of D-InSAR technique in regional settlement monitoring of high-speed railway[J].Railway Investigation and Surveying,2017,43(1):24-26.)
- [10] 张兆旭.基于PS-InSAR技术的高速铁路沉降监测研究[D].北京:中国地质大学,2016.(ZHANG Zhaoxu.Study on settlement monitoring of high-speed railway based on PS-InSAR technology[D].Beijing:China University of Geosciences,2016.)
- [11] 武燕.基于DS-InSAR方法的黄土区域高速铁路沿线沉降监测[D].成都:西南交通大学,2019.(WU Yan.Settlement monitoring along the high-speed railway in Loess Area based on DS-InSAR method[D].Chengdu:Southwest Jiaotong University,2019.)
- [12] 马传广,武涛.盘营客运专线通过辽河油田采油区地面变形可能性及预防措施[J].铁道勘察,2011,37(4):51-54.(MA Chuanguang,WU Tao.Posibility of surface subsidence in oil-extraction area of liaohe oil field traversed by Yingkuo-Panjin Passenger-dedicated railway and countermeasures[J].Railway Investigation and Surveying,2011,37(4):51-54.)
- [13] 孙赫,张勤,杨成生,等.PS-InSAR技术监测分析辽宁盘锦地区地面沉降[J].上海国土资源,2014,35(4):68-71.(SUN He,ZHANG Qin,YANG Chengsheng,et al.PS-InSAR monitoring of land subsidence in the Panjin region of Liaoning province[J].Shanghai Land and Resources,2014,35(4):68-71.)
- [14] 温守钦.鞍山南部区域生态地质环境的研究与评价[D].沈阳:东北大学,2009.(WEN Shouqin.Study and evaluation of the regional eco geological environment in the south of Anshan[D].Shenyang:Northeastern University,2009.)
- [15] 朱建军,李志伟,胡俊.InSAR变形监测方法与研究进展[J].测绘学报,2017,46(10):1717-1733.(ZHU Jianjun,LI Zhiwei,HU Jun.Research progress and methods of InSAR for deformation monitoring[J].Acta Geodaetica et Cartographica Sinica,2017,46(10):1717-1733.)
- [16] HANSSENRF.Radar Interferometry:data interpretation and error analysis[M].Netherlands:Springer,2001.
- [17] BERARDINO P,FORNARO G,LANARI R,et al.A new algorithm for surface deformation monitoring based on small baseline dif-ferential SAR interferograms[J].IEEE Transactions on Geo-science and Remote Sensing,2002,40(11):2375-2383.
- [18] 阙金声,燕慧晓,王洪播,等.基于小波理论与人工神经网络的滑坡变形预测[J].工程地质学报,2016(S1):647-652.(QUE Jinsheng,YAN Xiaohui,WANG Hongbo,et al.Prediction of the landslide deformation based on the wavelet theory and BP neural network[J].Journal of Engineering Geology,2016(S1):647-652.)
- [19] 李勇发,左小清,熊鹏,等.基于PS-InSAR技术和遗传神经网络算法的矿区地表沉降监测与预计[J].地球物理学进展,2020(3):845-851.(LI Yongfa,ZUO Xiaoqing,XIONG Peng,et al.Surface subsidence monitoring and prediction based on PS-InSAR technology and genetic neural network algorithm[J].Progress in Geophysics,2020(3):845-851.)
- [20] 洪晓江,张坤,舒志云.改进的小波神经网络在桥梁施工控制中的应用[J].交通科技与经济,2012,14(4):11-14.(HONG Xiaojiang,ZANG Kun,SHU Zhiyun.Application of improved wavelet neural network in bridge construction control[J].Transportation Technology and Economy,2012,14(4):11-14.)
- [21] 田其煌.基于小波技术的软土路基沉降数据分析方法研究[D].南京:河海大学,2007.(TIAN Qihuang.Study on data analysis method of soft soil subgrade settlement based on wavelet technology[D].Nanjing:Hehai University,2007.)
- [22] 徐全军,张庆明,恽寿榕.爆破地震峰值的神经网络预报模型[J].北京理工大学学报,1998(4):472-475.(XU Quanjun,ZHANG Qingming,YUN Shourong.Neural network model for forecasting peak acceleration of blasting vibration[J].Transactions of Beijing Institute of Technology,1998(4):472-475.)
- [23] 吴文豪,周志伟,李陶,等.精密轨道支持下的哨兵卫星TOPS模式干涉处理[J].测绘学报,2017,46(9):1156-1164.(WUWenhao,ZHOU Zhiwei,LI Tao,et al.A study of Sentinel-1 TOPS mode Co-registration[J].Acta Geodaetica et Cartographica Sinica,2017,46(9):1156-1164.)
- [24] 李国和,许再良,孙树礼.华北平原地面沉降对高速铁路的影响及其对策[J].铁道工程学报,2007,24(8):7-12.(LI Guohe,XU Zailiang,SUN Shuli,et al.The influence of surface subsidence on construction of high-speed railway in North China plain and its countermeasures[J].Journal of Railway Engineering Society,2007,24(8):7-12.)
- [25] 刘攀.小波神经网络在高铁路基沉降监测中的应用研究[D].兰州:兰州大学,2017.(LIU Pan.Study on the application of wavelet neural network in the settlement monitoring of high-speed railway subgrade[D].Lanzhou:Lanzhou University,2017.)