顾及影像稀疏特性的压缩感知超分辨率重建Reconstruction of compressed sensing super-resolution with consideration of image sparse feature
李春梅,邓喀中,孙久运,王慧
摘要(Abstract):
针对传统压缩感知信号重构仅实现对原始图像的复原和逼近,无法实质性提高影像分辨率问题,该文提出一种非退化的压缩感知超分重构方法:从图像传感器的结构分析数字影像的稀疏特性,进而以插值图像为指导,采用非线性的压缩感知优化重建方法,实现了非退化的单帧图像超分辨率重建。研究表明:该文方法改变了影像采集的过程和途径,弥补了传统压缩感知信号重构无法实质性提高影像分辨率的缺陷,且其重建图像的视觉效果及定量指标均优于传统插值法。
关键词(KeyWords): 图像传感器;摄影测量;压缩感知;稀疏表示;信号重构;超分辨率重建
基金项目(Foundation): 国家自然科学青年基金项目(41701380)
作者(Author): 李春梅,邓喀中,孙久运,王慧
DOI: 10.16251/j.cnki.1009-2307.2018.10.013
参考文献(References):
- [1]范郭亮.煤矿井下监控图像超分辨率复原关键技术研究[D].北京:中国矿业大学,2012:11-21.(FAN Guoliang.Research on key technologies of super-resolution restoration for underground mine surveillance images[D].Beijing:China University of Mining and Technology,2012:11-21.)
- [2]张景雄,阳柯,郭建中.压缩感知的信息论解译[J].武汉大学学报(信息科学版),2014,39(11):1261-1268.(ZHANG Jingxiong,YANG Ke,GUO Jianzhong.Information-theoretic interpretations of compressive sampling[J].Geomatics and Information Science of Wuhan University,2014,39(11):1261-1268.)
- [3]CANDS E J,ROMBERG J,TAO T.Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory,2006,52(2):489-509.
- [4]LUSTIG M,DONOHO D L,SANTOS J M,et al.Compressed sensing MRI[J].IEEE Signal Processing Magazine,2008,25(2):72-82.
- [5]HERMAN M,STROHMER T.High resolution radar via compressed sensing[J].IEEE Transactions on Signal Processing,2007,57(6):2275-2284.
- [6]BIOUCAS-DIAS J M,FIGUEIREDO M A T.A new TwIST:two-step iterative shrinkage/thresholding algorithms for image restoration[J].IEEE Transactions on Image Processing,2007,16(12):2992-3004.
- [7]练秋生,高彦彦,陈书贞.基于两步迭代收缩法和复数小波的压缩传感图像重构[J].仪器仪表学报,2009,30(7):1426-1431.(LIAN Qiusheng,GAO Yanyan,CHEN Shuzhen.Compressed sensing image reconstruction based on two-step iterative shrinkage and complex wavelet[J].Chinese Journal of Scientific Instrument,2009,30(7):1426-1431.)
- [8]CHAMBELLE A.An algorithm for total variation minimization and applications[J].Journal of Mathematical Imaging and Vision,2004,20(1/2):89-97.
- [9]SEN P,DARABI S.Compressive image super-resolution[C]∥Proceedings of 2009 Conference Record of the Forty-third Asilomar Conference on Signals,Systems and Computers.Piscataway:IEEE,2009:1235-1242.
- [10]孙久运.矿区变形监测精密近景摄影测量关键技术研究[D].徐州:中国矿业大学,2010:11-24.(SUN Jiuyun.Research on key technology of precision close-range photogrammetry for deformation monitoring in mining area[D].Xuzhou:China University of Mining and Technology,2010:11-24.)
- [11]李奇,冯华君,徐之海.一种基于绿色分量的CCD颜色插值算法[J].光电子·激光,2001,12(8):842-844.(LI Qi,FENG Huajun,XU Zhihai.A color interpolation algorithm of CCD based on green components[J].Journal of Optoelectronics·Laser,2001,12(8):842-844.)
- [12]SAKAMOTO T,NAKANISHI C,HASE T.Software pixel interpolation for digital still cameras suitable for a32-bit MCU[J].IEEE Transaction on Consumer Electronics,1998,44(4):1342-4352.
- [13]CANDS E J.Compressive sampling[C]∥Proceedings of International Congress of Mathematicians.Zürich,Switzerland:European Mathematical Society Publishing House,2006:1433-1452.
- [14]CANDS E J,TAO T.Decoding by linear programming[J].IEEE Transactions on Information Theory,2005,51(12):4202-4215.
- [15]CANDS E J,TAO T.Near optimal signal recovery from random projections:universal encoding strategies[J].IEEE Transactions on Information Theory,2006,52(12):5406-5425.
- [16]TSAIG Y,DONOHO D L.Extensions of compressed sensing[J].Signal Processing,2006,86(3):549-571.
- [17]DONOHO D L.For most large underdetermined systems of linear equations the minimal L1-norm solution is also the sparsest solution[J].Communications on Pure and Applied Mathematics,2006,59(6):797-829.
- [18]TROPP J A,GILBERT A C.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Transactions on Information Theory,2007,53(12):4655-4666.
- [19]CHEN S S,DOHONO D L,SAUNDERS M A.Atomic decomposition by basis pursuit[J].SIAM Review,2001,43(1):129-159.
- [20]FIGUEIREDO M A T,NOWAK R D,WRIGHT S J.Gradient projection for sparse reconstruction:application to compressed sensing and other inverse problems[J].IEEE Journal of Selected Topics in Signal Proeessing,2007,1(4):586-597.
- [21]DAUBECHIES I,DEFRISE M,DE MOL C.An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J].Communications on Pure and Applied Mathematics,2004,57(11):1413-1457.
- [22]MATEI B,MEYER Y.A variant on the compressed sensing of Emmanuel Candès[EB/OL].[2016-12-19].http:∥www.dsp.ece.rice.edu/cs.
- [23]谢正祥,王志芳,熊兴良,等.基于视觉感知噪声模型的彩色图像质量评价和彩色图像质量最佳化[J].中国图象图形学报,2010,15(10):1454-1464.(XIE Zhengxiang,WANG Zhifang,XIONG Xingliang,et al.Color image quality assessment based on noise model of human vision perception and color image quality optimization[J].Journal of Image and Graphics,2010,15(10):1454-1464.)