大旋转角坐标变换非迭代公式Non-iterative solution applied to large rotation angle for datum transformation
边少锋,李忠美,纪兵,金立新
摘要(Abstract):
针对求解7参数的过程中,经典的线性化最小二乘法因需线性化、迭代及初值以及存在算法耗时出现不收敛现象的问题,该文对无须迭代的7参数坐标变换公式进行了研究。为避免各类参数间的相关性,采用消去法并按照依次求解旋转参数、比例系数和平移参数的顺序解得坐标变换参数。先利用最小二乘法求解旋转参数,然后通过构建目标函数的方式求解比例系数与平移参数,最终得到无须线性化、无须迭代、无须初值的,可用于大旋转角的7参数坐标变换公式。与线性化最小二乘方法进行相比,该方法具有相当的精度及更高的运算效率,可在一定程度上丰富坐标变换理论。
关键词(KeyWords): 坐标变换;7参数;非线性化;非迭代;大旋转角;斜对称矩阵;目标函数
基金项目(Foundation): 国家自然科学基金项目(41604010,41471387,41574009)
作者(Author): 边少锋,李忠美,纪兵,金立新
DOI: 10.16251/j.cnki.1009-2307.2017.09.009
参考文献(References):
- [1]吕志平,朱华统.坐标转换模型的检验及统一表示[J].测绘学报,1993,22(3):161-167.(LV Zhiping,ZHU Huatong.The testing and the unified expression of coordinate transformation models[J].Acta Geodaetica et Cartographica Sinica,1993,22(3):161-167.)
- [2]李厚朴,边少锋,钟斌.地理坐标系计算机代数精密分析理论[M].北京:国防工业出版社,2015.(LI Houpu,BIAN Shaofeng,ZHONG Bin.The precise analysis theory by computer algebra in geographic coordinate systems[M].Beijing:National Defense Industry Press,2015.)
- [3]施一民,冯琰.两种测地坐标系之间的坐标转换[J].测绘学报,2002(S1):22-26.(SHI Yimin,FENG Yan.Coordinate transformation between two geodesic coordinate systems[J].Acta Geodaetica et Cartographica Sinica,2002(S1):22-26.)
- [4]AWANGE J L,GRAFAREND E W.Closed form solution of the over-determined nonlinear 7parameter datum transformation[J].Allgemeine Vermessungsnachrichten,2003,110:130-149.
- [5]AWANGE J,GRAFAREND E W.Linearized least squares and nonlinear Gauss-Jacobi combinatorial algorithm applied to the 7-parameter datum transformation C7(3)problem[J].Zeitschrift für Vermessungswesen,2002,127(2):109-116.
- [6]ZAVOTI J,JANCST.The solution of the 7-parameter datum transformation problem with-and without the Gr9bner basis[J].Acta Geodaetica et Geophysica Hungarica,2006,41(1):87-100.
- [7]GRAFAREND E W,AWANGE J L.Nonlinear analysis of the three-dimensional datum transformation conformal group C7(3)[J].Journal of Geodesy,2003,77(1-2):66-76.
- [8]CHEN Y,SHEN Y Z,LIU D J.A simplified model of three dimensional-datum transformation adapted to big rotation angle[J].Geomatics and Information Science of Wuhan University,2004,29(12):1101-1105.
- [9]HORN BKP.Closed-form solution of absolute orientation using unit quaternions[J].Journal of the Optical Society of America A,1987,4(4):629-642.
- [10]SHEN Y Z,CHEN Y,ZHENG D H.A quaternionbased geodetic datum transformation algorithm[J].Journal of Geodesy,2006,80(5):233-239.
- [11]HAN J Y.Noniterative approach for solving the indirect problems of linear reference frame transformations[J].Journal of Surveying Engineering,2010,136(4):150-156.
- [12]LI B F,SHEN Y Z,LI W X.The seamless model for three-dimensional datum transformation[J].Science China Earth Sciences,2012,55(12):2099-2108.
- [13]CHANG G.Closed form least-squares solution to 3D symmetric Helmert transformation with rotational invariant covariance structure[J].Acta Geodaetica et Geophysica,2016,51(2):237-244.
- [14]CHANG G.On least-squares solution to 3Dsimilarity transformation problem under Gauss–Helmert model[J].Journal of Geodesy,2015,89(6):573-576.
- [15]FANG X.A total least squares solution for geodetic datum transformations[J].Acta Geodaetica et Geophysica,2014,49(2):189-207.