顾及平稳特征的PM2.5浓度时空趋势拟合研究Study on spatial-temporal trends of PM2.5 concentration with stationary characteristics
张小璐,刘纪平,梁勇,刘晓东,赵阳阳,董珍珍
摘要(Abstract):
针对PM2.5浓度估算中全局平稳因素和局部非平稳因素同时存在的问题,该文以京津冀地区2015年1月—7月的PM2.5浓度为研究对象,人口密度、GDP、AOD、温度、相对湿度、风速和大气压强为影响因子,利用混合时空地理加权回归模型对PM2.5浓度进行估算。结果显示,考虑全局平稳特征时能有效地提升PM2.5浓度估算的精度,PM2.5浓度与风速、温度呈负相关关系,京津冀地区PM2.5浓度呈北低南高的趋势。
关键词(KeyWords): 平稳特征;混合时空地理加权回归模型;PM2.5浓度;时空趋势
基金项目(Foundation): 国家重点研发计划项目(2016YFC0803108)
作者(Author): 张小璐,刘纪平,梁勇,刘晓东,赵阳阳,董珍珍
DOI: 10.16251/j.cnki.1009-2307.2018.05.006
参考文献(References):
- [1]LIU Y,SARNAT J A,KILARU V,et al.Estimating ground-level PM2.5in the eastern United States using satellite remote sensing[J].Environmental Science&Technology,2005,39(9):3269-3278.
- [2]LIU Y,FRANKLIN M,KAHN R,et al.Using aerosol optical thickness to predict ground-level PM2.5concentrations in the St.Louis area:a comparison between MISR and MODIS[J].Remote Sensing of Environment,2007,107(1-2):33-44.
- [3]GUO J P,ZHANG X Y,CHE H Z.Correlation between PM concentrations and aerosol optical depth in eastern China[J].Atmospheric Environment,2009,43:5876-5886.
- [4]GUO Y,FENG N,CHRISTOPHER S A,et al.Satellite remote sensing of fine particulate matter(PM2.5)air quality over Beijing using MODIS[J].International Journal of Remote Sensing,2014,35(17):6522-6544.
- [5]SONG W,JIA H,HUANG J,et al.A satellite-based geographically weighted regression model for regional PM2.5estimation over the Pearl River delta region in China[J].Remote Sensing of Environment,2014:1-7.
- [6]MEYTAR S H,KLOOG I,KOUTRAKIS P,et al.Assessment of PM2.5concentrations over bright surfaces using MODIS satellite observations[J].Remote Sensing of Environment,2015,163:180-185.
- [7]马宗伟.基于卫星遥感的我国PM2.5时空分布研究[D].南京:南京大学,2015.(MA Zongwei.Study on spatiotemporal distributions of PM2.5in China using satellite remote sensing[D].Nanjing:Nanjing University,2015.)
- [8]SHI W,WONG M S,WANG J,et al.Analysis of airborne particulate matter(PM2.5)over Hong Kong using remote sensing and GIS[J].Sensors,2012,12(6):6825-6836.
- [9]杨毅.顾及时空非平稳性的地理加权回归方法研究[D].武汉:武汉大学,2016.(YANG Yi.Research on geographically and temporally weighted regression for spatial and temporal nonstationarity[D].Wuhan:Wuhan University,2016.)
- [10]BAI Y,WU L,QIN K,et al.A geographically and temporally weighted regression model for ground-level PM2.5estimation from satellite-derived 500m resolution AOD[J].Remote Sensing,2016,8(3):262.
- [11]赵阳阳,刘纪平,杨毅,等.混合时空地理加权回归及参数的两步估计[J].计算机科学,2017(3):274-277,312.(ZHAO Yangyang,LIU Jiping,YANG Yi,et al.Mixed geographically and temporally weighted regression and two-step estimation[J].Computer Science.2017(3):274-277,312.)
- [12]LIU Jiping,ZHAO Yangyang,YANG YI,et al.A mixed geographically and temporally weighted regression:exploring spatial-temporal variations from global and local perspectives[J].Entropy,2017,19,53.
- [13]赵阳阳,刘纪平,杨毅,等.一种协同时空地理加权回归PM2.5浓度估算方法[J].测绘科学,2016,41(12):172-178.(ZHAO Yangyang,LIU Jiping,YANG Yi,et al.An approach of co-training geographically and temporally weighted regression to estimate PM2.5concentration[J].Science of Surveying and Mapping,2016,41(12):172-178.)
- [14]马晓倩,刘征,赵旭阳,等.京津冀雾霾时空分布特征及其相关性研究[J].地域研究与开发,2016(2):134.(MA Xiaoqian,LIU Zheng,ZHAO Xuyang.The spatial and temporal variation of haze and its relativity in the Beijing-Tianjin-Hebei region[J].Areal Research and Development,2016(2):134.)
- [15]BO Huang.Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices[J].International Journal of Geographical Information Science,2010,24(3):383-401.
- [16]覃文忠.地理加权回归基本理论与应用研究[D].上海:同济大学,2007.(TAN Wenzhong.Basic theory and application of geographically weighted regression[D].Shanghai:Tongji University,2007.)