参考重力场模型对精化局部大地水准面的影响Influence of reference gravity field model on the refinement of local geoid
马志伟,纪兵,钟玉龙
摘要(Abstract):
针对径向基函数建模框架下参考重力场模型对局部大地水准面精化的影响问题,通过移去不同截断阶次的参考场,分别构建大地水准面模型并进行了精度比较。结果显示,截断至420阶的XGM2016模型,更适合作为科罗拉多地区的参考重力场模型。其所得大地水准面,相对于GPS/水准和区域平均校准模型的误差RMS分别为2.2 cm和2.4 cm,比其他截断阶次下的大地水准面精度提高0.5~2 cm。另外,与其他机构的大地水准面模型相比,其精度也是较优的。该文所采用的确定参考场截断阶次的方法,可为局部地区高精度大地水准面模型的构建提供一定参考。
关键词(KeyWords): 参考重力场模型;大地水准面;径向基函数;科罗拉多
基金项目(Foundation): 国家自然科学基金项目(42104087,41874091);; 河南省教育厅科技计划项目(19B170002)
作者(Author): 马志伟,纪兵,钟玉龙
DOI: 10.16251/j.cnki.1009-2307.2022.09.005
参考文献(References):
- [1] SáNCHEZ L,?GREN J,HUANG J,et al.Basic agreements for the computation of station potential values as IHRS coordinates,geoid undulations and height anomalies within the Colorado 1 cm geoid experiment[Z].Germany:Technische Universit?t München,2018.
- [2] WANG Yan ming,SáNCHEZ L,?GREN J,et al.Colorado geoid computation experiment:Overview and summary[J].Journal of Geodesy,2021,95(12):1-21.
- [3] HUANG Jianliang,VéRONNEAU M.Canadian gravimetric geoid model 2010[J].Journal of Geodesy,2013,87(8):771-790.
- [4] VARGA M,PITO■áK M,NOVáK P,et al.Contribution of GRAV-D airborne gravity to improvement of regional gravimetric geoid modelling in Colorado,USA[J].Journal of Geodesy,2021,95(5):1-23.
- [5] JIANG Tao.On the contribution of airborne gravity data to gravimetric quasigeoid modelling:A case study over Mu Us area,China[J].Geophysical Journal International,2018,215(2):1308-1321.
- [6] WU Yihao,LUO Zhicai,CHEN Wu,et al.High-resolution regional gravity field recovery from Poisson wavelets using heterogeneous observational techniques[J].Earth,Planets and Space,2017,69:34.
- [7] WITTWER T.Regional gravity field modelling with radial basis functions[D].Delft:Delft University of Technology,2009.
- [8] JIANG Tao,DANG Yamin,ZHANG Chuanyin.Gravimetric geoid modeling from the combination of satellite gravity model,terrestrial and airborne gravity data:A case study in the mountainous area,Colorado[J].Earth,Planets and Space,2020,72:189.
- [9] GRIGORIADIS V N,VERGOS G S,BARZAGHI R,et al.Collocation and FFT-based geoid estimation within the Colorado 1 cm geoid experiment[J].Journal of Geodesy,2021,95(5):1-18.
- [10] MCCUBBINE J C,AMOS M J,TONTINI F C,et al.The New Zealand gravimetric quasigeoid model 2017 that incorporates nationwide airborne gravimetry[J].Journal of Geodesy,2018,92(8):923-937.
- [11] YANG H.Geoid determination based on a combination of terrestrial and airborne gravity data in south Korea[D].Ohio:The Ohio State University,2014.
- [12] SHIH H C,HWANG C,BARRIOT J P,et al.High-resolution gravity and geoid models in Tahiti obtained from new airborne and land gravity observations:Data fusion by spectral combination[J].Earth,Planets and Space,2015,67:124.
- [13] INCE E S,BARTHELMES F,REI?LAND S,et al.ICGEM-15 years of successful collection and distribution of global gravitational models,associated services,and future plans[J].Earth System Science Data,2019,11(2):647-674.
- [14] TSCHERNING C,RAPP R.Closed covariance expressions for gravity anomalies,geoid undulations,and deflections of the vertical implied by anomaly degree variance models[Z].Ohio:Ohio State University,1974.
- [15] SáNCHEZ L,?GREN J,HUANG Jianliang,et al.Strategy for the realisation of the international height reference system(IHRS)[J].Journal of Geodesy,2021,95(3):1-33.
- [16] FORSBERG R,TSCHERNING C C.The use of height data in gravity field approximation by collocation[J].Journal of Geophysical Research:Solid Earth,1981,86(B9):7843-7854.
- [17] FORSBERG R.A Study of Terrain Reductions,Density Anomalies and Geophysical Inversion Methods in Gravity Field Modelling[R].Defense Technical Information Center,1984.
- [18] FREEDEN W,SCHNEIDER F.Regularization wavelets and multiresolution[J].Inverse Problems,1998,14(2):225-243.
- [19] SCHMIDT M,FENGLER M,MAYER-GüRR T,et al.Regional gravity modeling in terms of spherical base functions[J].Journal of Geodesy,2007,81(1):17-38.
- [20] KLEES R,TENZER R,PRUTKIN I,et al.A data-driven approach to local gravity field modelling using spherical radial basis functions[J].Journal of Geodesy,2008,82(8):457-471.
- [21] BENTEL K,SCHMIDT M,GERLACH C.Different radial basis functions and their applicability for regional gravity field representation on the sphere[J].GEM - International Journal on Geomathematics,2013,4(1):67-96.
- [22] KOCH K R,KUSCHE J.Regularization of geopotential determination from satellite data by variance components[J].Journal of Geodesy,2002,76(5):259-268.
- [23] WU Yihao,ZHOU Hao,ZHONG Bo,et al.Regional gravity field recovery using the GOCE gravity gradient tensor and heterogeneous gravimetry and altimetry data[J].Journal of Geophysical Research:Solid Earth,2017,122(8):6928-6952.
- [24] LI Xiaopeng,CROWLEY J W,HOLMES S A,et al.The contribution of the GRAV-D airborne gravity to geoid determination in the Great Lakes region[J].Geophysical Research Letters,2016,43(9):4358-4365.
- [25] LIU Qing,SCHMIDT M,SáNCHEZ L,et al.Regional gravity field refinement for(quasi-)geoid determination based on spherical radial basis functions in Colorado[J].Journal of Geodesy,2020,94(10):1-19.
- [26] SALEH J,LI Xiaopeng,WANG Yan ming,et al.Error analysis of the NGS’ surface gravity database[J].Journal of Geodesy,2013,87(3):203-221.
- [27] TORGE W.Gravimetry[M].Berlin and New York:de Gruyter,1989.
- [28] LIEB V,SCHMIDT M,DETTMERING D,et al.Combination of various observation techniques for regional modeling of the gravity field[J].Journal of Geophysical Research:Solid Earth,2016,121(5):3825-3845.
- [29] BUCHA B,JANáK J,PAP■ regional gravity field modelling in a mountainous area from terrestrial gravity data[J].Geophysical Journal International,2016,207(2):949-966.
- [30] EICKER A.Gravity field refinement by radial basis functions from in situ satellite data[D].Bonn:Universit?t Bonn,2008.