格陵兰岛冰盖质量变化趋势最优非线性模型的建立Establishment of optimal nonlinear model on mass-change trends over Greenland ice sheets
超能芳,王正涛,晁定波,金涛勇
摘要(Abstract):
文章基于线性回归和高阶多项式模型研究了格陵兰岛冰盖质量变化趋势,并利用多项式系数假设检验、R2调整、信息准则、交叉验证多种准则进行比较分析。对比多个周期线性拟合和非线性回归模型得到的趋势值,结果表明,二阶多项式模型得到的格陵兰岛冰盖质量变化趋势值最优,并且利用GRACE获取的冰盖质量变化趋势与研究周期和趋势模型具有很大的关系。
关键词(KeyWords): GRACE;格陵兰岛;趋势估计;统计准则
基金项目(Foundation): 国家自然科学基金资助项目(41074014,41274032);; 973项目(2013CB733301)
作者(Author): 超能芳,王正涛,晁定波,金涛勇
DOI: 10.16251/j.cnki.1009-2307.2014.08.014
参考文献(References):
- [1]胡小工,陈剑利,周永宏,等.利用GRACE空间重力测量监测长江流域水储量的季节性变化[J].中国科学D辑,2006,36(03):225-232
- [2]钟敏,段建宾,许厚泽,等.利用卫星重力观测研究近5年中国陆地水量中长空间尺度的变化趋势[J].科学通报,2009,54(09):1290-1294.
- [3]刘任莉.利用GRACE与GPS研究中国大陆地区水文负载形变[D].武汉:武汉大学,2013.
- [4]Chen J L,Tapley B D,Wilson C R.Alaskan mountain glacial melting observed by satellite gravimetry[J].Earth Planet.Sci.Lett.,2006,248:368-378.
- [5]Chen J L,Wilson C R,Tapley B D.Satellite gravity measurements confirm accelerated melting of Greenland ice sheet[J].Science,2006,313:1958-1960.
- [6]Luthcke S B,Zwally H J,Abdalati W,et al.Recent Greenland ice mass loss by drainage system from satellite gravity observations[J].Science,2006,314:1286-1289.
- [7]Baur O,Kuhn M,Featherstone W E.GRACE-derived ice-mass variations over Greenland by accounting for leakage effects[J].Geophys.Res.,2009,114:B06407.
- [8]Velicogna I,Wahr J.Measurements of time-variable gravity show mass loss in Antarctica[J].Science,2006,311:1754-1756.
- [9]Chen JL,Wilson C R,Seo K W.S2tide aliasing in GRACE time-variable gravity solutions[J].J.Geod.,2009,83:679-687.
- [10]Velicogna I.Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE[J].Geophys.Res.Lett.,2009,36:L19503.
- [11]Cleveland W S.Robust locally weighted regression and smoothing scatterplots[J].JASA,1979,74:829-836.
- [12]洪志刚,等.青藏高原冰雪资源的三维表面监测技术[J].测绘科学,2012,37(02):63-65.
- [13]Hurvich C M,Tsai C L.Regression and time series model selection in small samples[J].Biometrika,1989,76:297-307.
- [14]Schwarz G.Estimating the dimension of a model.Ann[J].Stat.1978,6:461-464.
- [15]Wahr J,Molenaar M,Bryan F.Time variability of the Earth’s gravity field:hydrological and oceanic effects and their possible detection using GRACE[J].J.Geophys.Res.,1998,103:30205-30229.
- [16]King M A,Bingham R J,Moore P,et al.Lower satellite-gravimetry estimates of Antarctic sea-level contribution[J].Nature,2012,491:586-589.
- [17]Chen J L,Wilson C R,Tapley B D,et al.Low degree gravitational changes from GRACE:validation and interpretation[J].Geophy.Res.Lett.,2004,31(22).
- [18]Wahr J,Swenson S,Zlotnicki V,et al.Time-variable gravity from GRACE:first results[J].Geophy.Res.Lett.,2004,31(11).
- [19]Chambers D P,Wahr J,Nerem R S.Preliminary observations of global ocean mass variations with GRACE[J].Geophys.Res.Lett.,2004,31(13).
- [20]Jekeli C.Alternative methods to smooth the earth’s gravity field[R].Report 327,Department of Geodetic Science and Surveying,Ohio State University,Columbus,1981.
- [21]Jekeli C.The determination of gravitational potential differences from satellite-to-satellite tracking[J].J.Celes.Dyn.Astron.,1999,75:85-100.
- [22]Swenson S,Wahr J.Post-processing removal of correlated errors in GRACE data[J].Geophys.Res.Lett.,2006,33(08).
- [23]Paulson A,Zhong S,Wahr J.Limitations on the inversion for mantle viscosity from postglacial rebound[J].Geophys.J.Int.,2007,168(03).
- [24]Oliver Baur.On the computation of mass-change trends from GRACE gravity field time-series[J].Journal of Geodynamics,2012,61:120-128.
- [25]Kaike H.Anewlook at the statistical model identification[C]//IEEE Trans.Autom.Control,1974,19:716-723.