植被生物量高光谱遥感监测研究进展Research progress of hyperspectral remote sensing monitoring of vegetation biomass assessment
姚阔,郭旭东,南颖,李坤,江淑芳,孙婷婷
摘要(Abstract):
植被生物量的评估对于研究全球碳循环具有重大意义,而高光谱遥感技术为精确反演地表属性提供了重要的数据支持。针对如何更好地应用高光谱遥感技术进行植被生物量精确反演的问题,该文详细阐述了国内外应用高光谱技术估测植被生物量的研究进展。对反演植被生物量所涉及的数据源、反演模型的构建方法及其模型特点、反演模型应用对象等内容进行了综合评述,并通过分析认为,高光谱遥感技术较传统的多光谱遥感技术在生物量反演精度上有了显著的提高。同时,对建模方法、多源遥感数据融合以及模型通用性等方面的研究进行了展望,以达到在大尺度范围内对植被生物量进行准确反演的目的。
关键词(KeyWords): 植被生物量;高光谱遥感;反演模型
基金项目(Foundation): 国家自然科学基金项目(41271200)
作者(Author): 姚阔,郭旭东,南颖,李坤,江淑芳,孙婷婷
DOI: 10.16251/j.cnki.1009-2307.2016.08.010
参考文献(References):
- [1]DUMANSKI J,PIERI C.Land quality indicators:research plan[J].Agriculture,Ecosystems and Environment,2000,81(2):93-102.
- [2]KOCH B.Status and future of laser scanning,synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment[J].ISPRS Journal of Photogrammetry and Remote Sensing,2010,65(6):581-590.
- [3]MARSHALL M,THENKABAIL P.Advantage of hyperspectral EO-1 hyperion over multispectral IKONOS,GeoEye-1,WorldView-2,Landsat ETM+,and MODIS vegetation indices in cro Pbiomass estimation[J].ISPRS Journal of Photogrammetry and Remote Sensing,2015,108:205-218.
- [4]GNYP M L,MIAO Y,YUAN F,et al.Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages[J].Field Crops Research,2014,155(155):42-55.
- [5]PSOMAS A,KNEUBHLER M,HUBER S,et al.Hyperspectral remote sensing for estimating aboveground biomass and for exploring species richness patterns of grassland habitats[J].International Journal of Remote Sensing,2011,32(24):9007-9031.
- [6]KOKALY R F,ASNER G P,OLLINGER S V,et al.Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies[J].Remote Sensing of Environment,2009,113(9):78-91.
- [7]姚阔,郭旭东,周冬,等.高光谱遥感土地质量指标信息提取研究进展[J].地理与地理信息科学,2014,30(6):7-12.
- [8]颜昌翔.高光谱成像仪发展简况[J].遥感学报,2014,18(Z1):11-19.
- [9]高铭,张善从,李盛阳.天宫一号高光谱成像仪遥感应用[J].遥感学报,2014,18(Z1):2-10.
- [10]李传荣,贾媛媛,胡坚,等.HJ-1光学卫星遥感应用前景分析[J].国土资源遥感,2008(3):1-3,9.
- [11]GNYP M L,BARETH G,LI F,et al.Development and implementation of a multiscale biomass model using hyperspectral vegetation indices for winter wheat in the North China Plain[J].International Journal of Applied Earth Observation and Geoinformation,2014,33(12):232-242.
- [12]刘占宇,黄敬峰,吴新宏,等.草地生物量的高光谱遥感估算模型[J].农业工程学报,2006,22(2):111-115.
- [13]艾金泉,陈文惠,罗丽娟,等.入侵种互花米草的光谱分层分析方法[J].测绘科学,2015,40(10):118-122.
- [14]MUTANGA O,SKIDMORE A K.Narrow band vegetation indices overcome the saturation problem in biomass estimation[J].International Journal of Remote Sensing,2004,25(19):3999-4014.
- [15]TIAN Y C,YAO X,YANG J,et al.Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground-and space-based hyperspectral reflectance[J].Field Crops Research,2011,120(2):299-310.
- [16]CHO M A,SKIDMORE A K.Hyperspectral predictors for monitoring biomass production in mediterranean mountain grasslands:Majella National Park,Italy[J].International Journal of Remote Sensing,2009,30(2):499-515.
- [17]黄春燕,王登伟,曹连莆,等.棉花地上鲜生物量的高光谱估算模型研究[J].农业工程学报,2007,23(3):131-315.
- [18]宋开山,张柏,李方,等.高光谱反射率与大豆叶面积及地上鲜生物量的相关分析[J].农业工程学报,2005,21(1):36-40.
- [19]方金,梁天刚,吕志邦,等.基于高光谱影像的高寒牧区土地覆盖分类与草地生物量监测模型[J].草业科学,2013,30(2):168-177.
- [20]REN H,ZHOU G,Zhang X.Estimation of green aboveground biomass of desert steppe in Inner Mongolia based on red-edge reflectance curve area method[J].Biosystems Engineering,2011,109(4):385-395.
- [21]LI F,MISTELE B,HU Y,et al.Comparing hyperspectral index optimization algorithms to estimate aerial Nuptake using multi-temporal winter wheat datasets from contrasting climatic and geographic zones in China and Germany[J].Agricultural and Forest Meteorology,2013,180(8):44-57.
- [22]张凯,王润元,王小平,等.黄土高原春小麦地上鲜生物量高光谱遥感估算模型[J].生态学杂志,2009,28(6):1155-1161.
- [23]张凯,郭铌,王润元,等.甘南草地地上生物量的高光谱遥感估算研究[J].草业科学,2009,26(11):44-50.
- [24]王秀珍,黄敬峰,李云梅,等.水稻地上鲜生物量的高光谱遥感估算模型研究[J].作物学报,2003,29(6):815-821.
- [25]李凤秀,张柏,刘殿伟,等.洪河自然保护区乌拉苔草生物量高光谱遥感估算模型[J].湿地科学,2008,6(1):51-59.
- [26]REN H,ZHOU G.Estimating aboveground green biomass in desert steppe using band depth indices[J].Biosystems Engineering,2014,127:67-78.
- [27]ABDEL-RAHMAN E M,MUTANGA O,ODINDI J,et al.A comparison of partial least squares(PLS)and sparse PLS regressions for predicting yield of Swiss chard grown under different irrigation water sources using hyperspectral data[J].Computers and Electronics in Agriculture,2014,106:11-19.
- [28]CHO M A,SKIDMORE A,CORSI F,et al.Estimation of green grass herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression[J].International Journal of Applied Earth Observation and Geoinformation,2007,9(4):414-424.
- [29]THENKABAIL P S,ENCLONA E A,ASHTON M S,et al.Hyperion,IKONOS,ALI,and ETM sensors in the study of African rainforests[J].Remote Sensing of Environment,2004,90(1):23-43.
- [30]KATTENBORN T,MAACK J,FA NACHT F,et al.Mapping forest biomass from space-Fusion of hyperspectral EO1-hyperion data and Tandem-X and WorldView-2canopy height models[J].International Journal of Applied Earth Observation and Geoinformation,2015,35(Part B):359-367.