不同重力场模型对青藏高原莫霍面反演的影响Effect of various gravity field models on the Moho topography inversion in the Tibet
邓文彬,苏丹竞,高宇潇,许闯
摘要(Abstract):
针对当前少有学者研究不同重力场模型对莫霍面地形反演的影响,该文利用Parker-Olderburg方法深入讨论纯GRACE重力场模型、纯GOCE重力场模型以及GRACE和GOCE混合重力场模型对青藏高原地区莫霍面反演的影响。实验结果表明,不同重力场模型所反演的莫霍面地形整体空间分布上比较一致,但也存在10 m量级的细微差异;该地区莫霍面地形分布呈顺时针旋转模式,可以较好反映主要构造结构的特点;最深的莫霍面约为70 km,远超过了其他地区正常地壳的厚度。
关键词(KeyWords): 莫霍面;重力场;青藏高原;反演;地形
基金项目(Foundation): 国家自然科学基金项目(51868074,51368056,41974014);; 2016自治区高校科研计划项目(XJEDU2016I015);; 2016新疆大学博士科学基金项目(BS160250);; 大地测量与地球动力学国家重点实验室开发基金项目(SKLGED2018-1-3-E);; 武汉大学测绘遥感信息工程国家重点实验室开放基金资助项目(19P01)
作者(Author): 邓文彬,苏丹竞,高宇潇,许闯
DOI: 10.16251/j.cnki.1009-2307.2020.04.001
参考文献(References):
- [1]高锐,熊小松,李秋生,等.由地震探测揭示的青藏高原莫霍面深度[J].地球学报,2009,30(6):761-773.(GAO Rui,XIONG Xiaosong,LI Qiusheng,et al.The Moho depth of Qinghai-Tibet Plateau revealed by seismic detection[J].Acta Geoscientica Sinica,2009,30(6):761-773.)
- [2]SHIN Y H,SHUM C K,BRAITENBERG C,et al.Moho topography,ranges and folds of Tibet by analysis of global gravity models and GOCE data[J].Scientific Reports,2015,5(11681):1-7.
- [3]TAPPONNIER P,PELTZER G,LE DAIN A Y,et al.Propagating extrusion tectonics in Asia:new insights from simple experiments with plasticine[J].Geology,1982,10(12):611-616.
- [4]GAO R,CHEN C,LU Z,et al.New constraints on crustal structure and Moho topography in Central Tibet revealed by SinoProbe deep seismic reflection profiling[J].Tectonophysics,2013,606:160-170.
- [5]曾融生,阚荣举.柴达木盆地西部地壳深界面的反射波[J].地球物理学报,1961,10(2):120-125.(TSENGJungsheng,KAN Yungchü.Deep sub-basement reflections in the western part of Chai-da-mu Basin[J].Chinese Journal of Geophysics,1961,10(2):120-125.)
- [6]ZHAO W,NELSON K D,CHE J,et al.Deep seismic reflection evidence for continental underthrusting beneath southern Tibet[J].Nature,1993,366:557-559.
- [7]KAO H,GAO R,RAU R,et al.Seismic image of the Tarim basin and its collision with Tibet[J].Geology,2001,29(7):575-578.
- [8]LU Z,GAO R,LI Q,et al.Test of deep seismic reflection profileing across central uplift of Qiangtang terrane in Tibetan Plateau[J].Journal of Earth Science,2009,20(2):438-447.
- [9]SHIN Y H,XU H Z,BRAITENBERG C,et al.Moho undulations beneath Tibet from GRACE-integrated gravity data[J].Geophysical Journal International,2007,170:971-985.
- [10]SHIN Y H,SHUM C K,BRAITERNBERG C,et al.Three-dimensional fold structure of the Tibetan Moho from Grace gravity data[J].Geophysical Research Letters,2009,36(L01302):1-5.
- [11]GUO J,SHANG K,JEKELI C,et al.On the energy integral formulation of gravitational potential differences from satellite-to-satellite tracking[J].Celestial Mechanics and Dynamical Astronomy,2015,121(4):415-429.
- [12]XU C,LIU Z W,LUO Z C,et al.Moho topography of the Tibetan Plateau using multi-scale gravity analysis and its tectonic implications[J].Journal of Asian Earth Sciences,2017,138:378-386.
- [13]XU C,WANG H H,LUO Z C,et al.Insight into urban faults by wavelet multi-scale analysis and modeling of gravity data in Shenzhen,China[J].Journal of Earth Science,2018,29(6):1340-1348.
- [14]XU C,LUO Z,SUN R,et al.Multilayer densities using a wavelet-based gravity method and their tectonic implications beneath the Tibetan Plateau[J].Geophysical Journal International,2018,213:2085-2095.
- [15]GAN W J,ZHANG P Z,SHEN Z K,et al.Presentday crustal motion within the Tibetan Plateau inferred from GPS measurements[J].Journal of Geophysical Research,2007,112(B8):1-14.
- [16]PARKER R L.The rapid calculation of potential anomalies[J].Geophysical Journal International,1972,31(4):447-455.
- [17]OLDENBURG D W.The inversion and interpretation of gravity anomalies[J].Geophysics,1974,39(4):526-536.
- [18]ZHOU H,XU C,LUO Z,et al.HUST-GOGRA2018s:a new gravity field model derived from the Combination of GRACE and GOCE data[J].Terrestrial Atmospheric and Oceanic Sciences,2019,30(1):97-109.
- [19]HIRT C,REXER M.Earth2014:1 arc-min shape,topography,bedrock and ice-sheet models-available as gridded data and degree-10800spherical harmonics[J].International Journal of Applied Earth Observation and Geoinformation,2015,39:103-112.
- [20]BOWIN C.Depth of principal mass anomalies contributing to the earth’s geoidal undulations and gravity anomalies[J].Marine Geodesy,1983,7:1-4.
- [21]LASKE G,MASTERS G,MA Z,et al.Update on CRUST1.0-A 1-degree global model of Earth’s crust[C/OL]∥Geophysical Research Abstracts,2013,15[2018-11-11].http:∥meetingorganizer.copernicus.org/EGU2013/EGU2013-2658.pdf.
- [22]TENZER R,CHEN W J.Regional gravity inversion of crustal thickness beneath the Tibetan Plateau[J].Earth Science Informatics,2014,7(4):265-276.
- [23]DZIEWONSKI A M,ANDERSON D L.Preliminary reference Earth model[J].Physics of the Earth and Planetary Interiors,1981,25(4):297-356.
- [24]BAGHERBANDI M.A comparison of three gravity inversion methods for crustal thickness modelling in Tibet Plateau[J].Journal of Asian Earth Sciences,2012,43(1):89-97.
- [25]ESHAGH M,HUSSAIN M,TENZER R,et al.Moho density constrast in central Eurasia from GOCE gravity gradients[J].Remote Sensing,2016,8(5):418.
- [26]ROYDEN L H,BURCHFIEL B C,VAN DER HILSTR D.The geological evolution of the Tibetan Plateau[J].Science,2008,321(5892):1054-1058.
- [27]ZHAO J M,MOONEY W D,ZHANG X K,et al.Crustal structure across the Altyn Tagh Range at the northern margin of the Tibetan Plateau and tectonic implications[J].Earth and Planetary Science Letters,2006,241(3/4):804-814.
- [28]TORSTEN M G,ZEHENTNER N,KLINGER B,et al.ITSG-Grace2014:a new GRACE gravity field release computed in Graz[C/OL]∥GRACE Science Team Meeting,Potsdam,2014.[2018-11-11].https:∥www.tugraz.at/institute/ifg/downloads/gravity-field-models/itsg-grace2014/.
- [29]PAIL R,GOIGINGER H,SCHUH W D,et al.Combined satellite gravity field model GOCO01Sderived from GOCE and GRACE[J].Geophysical Research Letters,2010,37(20):L20314.
- [30]PAVLIS N K,HOLMES S A,KENYON S C,et al.An Earth gravitational model to degree 2160:EGM2008[C]∥General Assembly of the European Geosciences Union,Vienna,Austria.[S.l.]:[s.n.],2008.