改进局部均值分解的单频周跳探测与修复方法Research on single-frequency cycle-slip detection and correction method based on improved LMD-SVR model
陈旭升
摘要(Abstract):
针对GNSS单频观测数据中小周跳难以探测与修复的问题,该文提出一种基于改进LMD-SVR的单频周跳探测与修复方法。该方法利用伪距和载波相位观测值构造周跳检测量,经改进局部均值分解(LMD)处理,通过乘积函数(PF)分量瞬时幅值函数极大值点的位置定位周跳发生的历元,利用使用粒子群算法优化的支持向量回归机对PF分量建立预测模型求取周跳的大小。实验结果表明,与传统LMD及经验模态分解分解结果相比,改进LMD分解结果更优,可以精确定位周跳发生的历元。该方法不仅可以探测周跳的发生、定位周跳发生的历元,并且可以计算周跳的具体数值进行周跳修复,为单频小周跳的探测与修复提供参考和借鉴。
关键词(KeyWords): 局部均值分解;滑动平均步长;单频;周跳探测与修复;支持向量回归机
基金项目(Foundation): 中国铁路设计集团有限公司科技开发课题项目(2021B240516)
作者(Author): 陈旭升
DOI: 10.16251/j.cnki.1009-2307.2021.12.006
参考文献(References):
- [1] BANVILLE S,LANGLEY R B.Mitigating the impact of ionospheric cycle slips in GNSS observations[J].Journal of Geodesy,2013,87(2):179-193.
- [2] MIAO Y,SUN Z W,WU S N.Error analysis and cycle-slip detection research on satellite-borne GPS observation[J].Journal of Aerospace Engineering,2011,24(1):95-101.
- [3] 甘雨.GNSS/INS组合系统模型精化及载波相位定位测姿[D].郑州:信息工程大学,2015.(GAN Yu.GNSS/INS integrated system model refining and position & attitude determination using carrier phase[D].Zhengzhou:Information Engineering University,2015.)
- [4] 王成,王解先.单频非差相位观测值的周跳探测与修复方法[J].同济大学学报(自然科学版),2012,40(9):1393-1398.(WANG Cheng,WANG Jiexian.Cycle slip detection and correction of single-frequency un-differenced phase observation[J].Journal of Tongji University(Natural Science),2012,40(9):1393-1398.)
- [5] 滕云龙,师奕兵,郑植.单频载波相位的周跳探测与修复算法研究[J].仪器仪表学报,2010,31(8):1700-1705.(TENG Yunlong,SHI Yibing,ZHENG Zhi.Algorithm of cycle-slip detection and correction in single-frequency carrier phase[J].Chinese Journal of Scientific Instrument,2010,31(8):1700-1705.)
- [6] 雷雨,高玉平.单频非差相位的周跳检测与修复方法研究[J].仪器仪表学报,2013,34(11):2484-2490.(LEI Yu,GAO Yuping.Study on cycle-slip detection and repair algorithm in single-frequency un-differenced carrier-phase[J].Chinese Journal of Scientific Instrument,2013,34(11):2484-2490.)
- [7] 朱江淼,闫迪,高源,等.基于改进EEMD和LSSVM的单频周跳探测与修复方法[J].计量学报,2019,40(3):491-497.(ZHU Jiangmiao,YAN Di,GAO Yuan,et al.The method for single-frequency cycle-slip detection and reparation based on modified EEMD and LSSVM[J].Acta Metrologica Sinica,2019,40(3):491-497.)
- [8] 赵旗旗,邹金慧.EEMD及LS-SVM在单频周跳探测与修复中的应用[J].计算机与应用化学,2017,34(6):476-480.(ZHAO Qiqi,ZOU Jinhui.Study on cycle-slip detection and repair in single-frequency based on EEMD and LS-SVM[J].Computers and Applied Chemistry,2017,34(6):476-480.)
- [9] 邓林峰,赵荣珍.基于CHI-LMD方法的转子振动信号分析[J].振动与冲击,2014,33(15):58-64.(DENG Linfeng,ZHAO Rongzhen.Rotor vibration signal analysis based on the CHI-LMD method[J].Journal of Vibration and Shock,2014,33(15):58-64.)
- [10] SMITH J S.The local mean decomposition and its application to EEG perception data[J].Journal of the Royal Society Interface,2005,2(5):443-454.
- [11] 裴益轩,郭民.滑动平均法的基本原理及应用[J].火炮发射与控制学报,2001(1):21-23.(PEI Yixuan,GUO Min.The fundamental principle and application of sliding average method[J].Journal of Gun Launch & Control,2001(1):21-23.)
- [12] 张亢.局部均值分解方法及其在旋转机械故障诊断中的应用研究[D].长沙:湖南大学,2012.(ZHANG Kang.Research on local mean decomposition method and its application to rotating machinery fault diagnosis[D].Changsha:Hunan University,2012.)
- [13] LIU Z,JIN Y,ZUO M J,et al.Time-frequency representation based on robust local mean decomposition for multicomponent AM-FM signal analysis[J].Mechanical Systems and Signal Processing,2017,95:468-487.
- [14] 高杨.BDS载波相位定位中周跳探测与修复方法的研究[D].昆明:昆明理工大学,2016.(GAO Yang.Research on cycle-slip detection and correction method in BDS carrier phase positioning[D].Kunming:Kunming University of Science and Technology,2016.)
- [15] 谭兴龙,王坚,韩厚增.支持向量回归辅助的GPS/INS组合导航抗差自适应算法[J].测绘学报,2014,43(6):590-597.(TAN Xinglong,WANG Jian,HAN Houzeng.SVR aided adaptive robust filtering algorithm for GPS/INS integrated navigation[J].Acta Geodaetica et Cartographica Sinica,2014,43(6):590-597.)
- [16] CHANG C C,LIN C J.LIBSVM:a library for support vector machines[J].ACM Transactions on Intelligent Systems and Technology,2011,2(3):1-27.
- [17] 张弦,王宏力.嵌入维数自适应最小二乘支持向量机状态时间序列预测方法[J].航空学报,2010,31(12):2309-2314.(ZHANG Xian,WANG Hongli.Condition time series prediction using least squares support vector machine with adaptive embedding dimension[J].Acta Aeronautica et Astronautica Sinica,2010,31(12):2309-2314.)
- [18] 张豪,许四法.基于经验模态分解和遗传支持向量机的多尺度大坝变形预测[J].岩石力学与工程学报,2011,30(S2):3681-3688.(ZHANG Hao,XU Sifa.Multi-scale dam deformation prediction based on empirical mode decomposition and genetic algorithm for support vector machines(GA-SVM)[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(S2):3681-3688.)