奇异谱分析的变形监测序列粗差探测方法The gross error detection of dam deformation observation data based on singular spectrum analysis
张东华,李志娟,刘全明,黄磊
摘要(Abstract):
针对时间序列数据中存在的粗差问题,该文首先介绍了奇异谱分析法(SSA)和未确知滤波法(UF)的工作原理,考虑到SSA方法在识别趋势项和周期性信号方面及UF算法在区分粗差和异常值上的优势,在SSA准确提取信号的基础上结合UF算法提出了一种新的SSA-UF粗差探测法:首先利用SSA提取观测值序列的信号并获取残余分量;然后通过UF算法对残余分量进行分析确定粗差点的位置;最后确定粗差点并剔除。通过单因素和多因素主导变形的观测值序列两个实例的验证分析,结果表明,该文中提出的SSA-UF粗差探测法与SSA数据统计方法相比在监测数据处理中的粗差探测效果明显,可靠性更高,为后续监测数据分析处理奠定了较好的基础。
关键词(KeyWords): 奇异谱分析;变形监测时间序列;粗差探测;未确知滤波
基金项目(Foundation): 内蒙古自治区高等学校科学研究项目(NJZY20049,NJZY18064);; 国家自然科学基金项目(51969023,51569018);; 内蒙古自治区自然科学基金资助项目(2018MS05005);; 内蒙古农业大学高层次人才科研启动项目(NDYB2018-60)
作者(Author): 张东华,李志娟,刘全明,黄磊
DOI: 10.16251/j.cnki.1009-2307.2020.08.003
参考文献(References):
- [1] 王奉伟.改进的局部均值分解和高斯过程在变形监测数据处理中的应用研究[D].南昌:东华理工大学,2016.(WANG Fengwei.On studying the application of local mean decomposition and Gaussian process in extraction signal analysis and forecasting research of deformation signal[D].Nanchang:East China University of Technology,2016.)
- [2] 龚循强,刘国祥,周秀芳.高速铁路桥墩沉降监测数据粗差探测方法研究[J].铁道建筑,2013(10):34-36.(GONG Xunqiang,LIU Guoxiang,ZHOU Xiufang.Research on gross error detection method for pier settlement monitoring data of high speed railway[J].Railway Engineering,2013(10):34-36.)
- [3] GOLYANDINA N,NEKRUTKIN V,ZHIGLJAVSKY A.Analysis of time series structure:SSA and related techniques[M].Boca Raton:Chapman & Hall/CRC,2001.
- [4] TAIBI H,KAHLOUCHE S,HADDAD M,et al.Trends in global and regional sea level from satellite altimetry within the framework of auto-SSA[J].Arabian Journal of Geosciences,2013,6(12):4575-4584.
- [5] GOLYANDINA N.On the choice of parameters in singular spectrum analysis and related subspace-based methods[J].Statistics and Its Interface,2010,3(3):259-279.
- [6] 王解先,连丽珍,沈云中.奇异谱分析在GPS站坐标监测序列分析中的应用[J].同济大学学报(自然科学版),2013,41(2):282-288.(WANG Jiexian,LIAN Lizhen,SHEN Yunzhong.Application of singular spectrum analysis to GPS station coordinate monitoring series[J].Journal of Tongji University(Natural Science),2013,41(2):282-288.)
- [7] 刘遵雄,周天清.基于奇异谱分析的GRNN模型在金融时间序列中的应用[J].华东交通大学学报,2011,28(2):29-34.(LIU Zunxiong,ZHOU Tianqing.Application of GRNN model based on SSA in financial time series[J].Journal of East Jiaotong University,2011,28(2):29-34.)
- [8] 卢辰龙.奇异谱分析在大地测量时间序列分析中的应用研究[D].长沙:中南大学,2014.(LU Chenlong.Research on application of singular spectrum analysis in geodetic survey time series[D].Changsha:Central South University,2014.)
- [9] 冯小磊,华锡生,黄红女.观测值序列的粗差探测方法[J].水电自动化与大坝监测,2006,30(3):56-59.(FENG Xiaolei,HUA Xisheng,HUANG Hongnyu.Gross-error detection for observation data series[J].Hydropower Automation and Dam Monitoring,2006,30(3):56-59.)
- [10] 方扬,王广兴,杜玉军,等.三种粗差检验方法的比较及分析[J].测绘通报,2009(9):4-8.(FANG Yang,WANG Guangxing,DU Yujun,et al.Comparison and analysis of three methods of gross error detection[J].Bulletin of Surveying and Mapping,2009(9):4-8.)
- [11] 黄红女,华锡生,宋小刚.土石坝监测数据的未确知滤波[J].长江科学院院报,2006(3):32-35.(HUANG Hongnyu,HUA Xisheng,SONG Xiaogang.Unascertained filtering method for monitoring data of earth rock-fill dams[J].Journal of Yangtze River Scientific Research Institute,2006(3):32-35.)
- [12] 刘忠强,孙昌瑜.基于变形观测数据粗差探测与修复的小波变换法[J].测绘与空间地理信息,2013,36(12):224-226.(LIU Zhongqiang,SUN Changyu.Wavelet transformation based on deformation observation data of gross error detection and correction[J].Geomatics & Spatial Information Technology,2013,36(12):224-226.)
- [13] 焦明连,蒋廷臣.基于小波分析的灰色预测模型在大坝安全监测中的应用[J].大地测量与地球动力学,2009,29(2):115-117.(JIAO Minglian,JIANG Tingchen.Application of grey model based on wavelet analysis in dam safety monitoring[J].Journal of Geodesy and Geodynamics,2009,29(2):115-117.)
- [14] 王奉伟,周昀琦,周世健,等.LMD方法变形监测数据粗差探测与修复[J].辽宁工程技术大学学报(自然科学版),2016,35(11):1295-1299.(WANG Fengwei,ZHOU Yunqi,ZHOU Shijian,et al.Gross error detection and correction with deformation observation data based on local mean decomposition method[J].Journal of Liaoning Technical University(Natural Science),2016,35(11):1295-1299.)