反导自记忆模型的隧道沉降分析Analysis of tunnel settlement based on reverse self-memory model
杨帆;吕磊;田振凯;何文义;
摘要(Abstract):
针对传统的变形预测模型不能对隧道高度非线性监测数据的沉降趋势和波动特征进行准确的预测问题,该文提出了反导自记忆模型。该模型运用了自记忆原理,克服了传统的变形预测模型对初值比较敏感、预测精度低等局限性,提高了对波动性数据的预测能力,之后通过工程实例验证了反导自记忆模型的可行性。最后与灰色自记忆模型进行对比,得出反导自记忆模型能够对非线性和波动性监测数据做出更加准确的预测,提高了预测的精度。
关键词(KeyWords): 隧道沉降预测;自忆性原理;反导自记忆模型;沉降趋势
基金项目(Foundation): 国家自然科学基金项目(50604009);; 辽宁省“百千万人才工程”人选资助项目(2010921099);; 辽宁省教育厅重点实验室基础研究项目(LJZS001)
作者(Authors): 杨帆;吕磊;田振凯;何文义;
DOI: 10.16251/j.cnki.1009-2307.2017.12.017
参考文献(References):
- [1]刘绍堂,刘文锴,周跃寅.一种隧道整体变形监测方法及其应用[J].武汉大学学报(信息科学版),2014,39(8):981-986.(LIU Shaotang,LIU Wenkai,ZHOU Yueyin.A tunnel overall deformation monitoring method and its application[J].Geomatics and Information Science of Wuhan University,2014,39(8):981-986.)
- [2]HE G H,YANG J.Deformation monitoring for subway tunnels based on TLS[J].Advanced Materials Research,2014,2914(864/867):2744-2749.
- [3]徐炳喜,独知行,赵会兴,等.大径高隧道变形监测方法及分析[J].测绘科学,2010,35(5):49-50,105.(XU Bingxi,DU Zhixing,ZHAO Huixing,et al.Method and analysis on great and high tunnel deformation monitoring[J].Science of Surveying and Mapping,2010,35(5):49-50,105.)
- [4]宋成志,刘阳,孔祥明,等.基于灰色GM(1,1)模型的在役隧道沉降量预测[J].公路交通科技(应用技术版),2015,11(6):275-277.(SONG Chengzhi,LIU Yang,KONG Xiangming,et al.Prediction of sedimentation in the tunnel based on GM(1,1)model[J].Journal of Highway and Transportation Research and Development,2015,11(6):275-277.)
- [5]文鸿雁,周吕,韩亚坤,等.基于卡尔曼滤波的GM(1,1)模型在高铁隧道沉降变形分析中的应用[J].大地测量与地球动力学,2014,34(1):88-91.(WEN Hongyan,ZHOU Lv,HAN Yakun,et al.Application of GM(1,1)model based on Kalman filter to the subsiding analysis of high-speed railway tunnel[J].Journal of Geodesy and Geodynamics,2014,34(1):88-91.)
- [6]高红,文鸿雁,李运健,等.基于小波变换与卡尔曼滤波结合的GM(1,1)模型在高铁隧道沉降变形分析中的应用[J].现代隧道技术,2016,53(4):84-89.(GAO Hong,WEN Hongyan,LI Yunjian,et al.Application of wavelet transform and Kalman filtering based GM(1,1)model in analyzing settlement deformation of high-speed railway tunnels[J].Modern Tunneling Technology,2016,53(4):84-89.)
- [7]曹鸿兴.动力系统自记忆性原理:预报和计算应用[M].北京:地质出版社,2002.(CAO Hongxing.Selfmemory principle of dynamical systems:application of prediction and calculation[M].Beijing:Geological Publishing House,2002.)
- [8]魏风英,曹鸿兴.长期预测的数学模型及应用[M].北京:气象出版社,1999.(WEI Fengying,CAO Hong-xing.The long-term forecasts mathematical model and application[M].Beijing:China Meteorological Press,1999.)
- [9]刘湘平,谢学斌,罗一忠.边坡非线性位移预测的动力系统自记忆模型[J].岩土工程学报,2010,32(10):1535-1542.(LIU Xiangping,XIE Xuebin,LUO Yizhong.Selfmemorization model of dynamic system for predicting nonlinear displacement of slopes[J].Chinese Journal of Geotechnical Engineering,2010,32(10):1535-1542.)
- [10]吕继强,沈冰,邵年华,等.黄河径流长期演化模式与EMD灰色自记忆模型[J].水利发电学报,2012,31(3):25-30.(LV Jiqiang,SHEN Bing,SHAO Nianhua,et al.Evolution modes and EMD gray self-memory model of the Yellow River water resources[J].Journal of Hydroelectric Engineering,2012,31(3):25-30.)
- [11]邓金鹏,黄东,谢学斌.岩土工程非线性位移时间序列分析的灰色自记忆模型[J].采矿技术,2014,14(4):41-44.(DENG Jinpeng,HUANG Dong,XIE Xuebin.Grey self-memory model of nonlinear displacement time series of geotechnical engineering[J].Mining Technology,2014,14(4):41-44.)
- [12]王伟,谢学斌,黄东.基于自记忆原理的深基坑位移监测方法[J].河北工程大学学报(自然科学版),2010,27(4):13-17.(WANG Wei,XIE Xuebin,HUANG Dong.Displacement prediction method of deep foundation pit based on self-memory theory[J].Journal of Hebei University of Engineering(Natural Science Edition),2010,27(4):13-17.)
- [13]李荣峰.水文非线性时间序列的自记忆模型研究[D].西安:西安理工大学,2005.(LI Rongfeng.Study on self-memory model of hydrologic nonlinear time series analysis[D].Xi'an:Xi'an University of Technology,2005.)
- [14]袁喆,杨志勇,史晓亮,等.灰色微分动态自记忆模型在径流模拟及预测中的应用[J].水利学报,2013,44(7):791-799.(YUAN Zhe,YANG Zhiyong,SHI Xiao-liang,et al.Differential hydrological grey self-memory model for runoff simulation and prediction[J].Journal of Hydraulic Engineering,2013,44(7):791-799.)
- [15]王伟.基坑位移时间序列分析的自记忆预测模型研究[D].长沙:中南大学,2011.(WANG Wei.Study on self-memory prediction model of foundation displacement time series analysis[D].Changsha:Central South University,2011.)