结合光谱相似和相位一致的高分辨率影像分类A high resolution image classification method considering spectral similarity and phase consistency
陈洋,范荣双,徐启恒,王竞雪,王文玮
摘要(Abstract):
针对面向对象分类结果存在"平滑地物细节"的问题,该文提出顾及光谱相似性和相位一致的高分辨率影像分类方法。该方法首先采用顾及光谱相似性的相位一致的模型方法来获得边缘相应幅度;再采用自动标记分水岭算法对影像进行初分割;顾及相邻分割对象的空间位置、形状、面积等特征的多重约束,提出相邻分割对象合并代价函数模型,对分割结果进行优化;最后结合支持向量机(SVM)对分割对象进行分类。结果表明,本文方法在提高高分辨率影像分类精度的同时,还能保持地物细节。
关键词(KeyWords): 高分辨率遥感影像;相位一致性;光谱相似性模型;支持向量机;影像分类
基金项目(Foundation): 国家重点研发计划项目(2016YFC0803100);; 国家自然科学基金项目(41101452);; 高等学校博士学科点专项科研基金(20112121120003)
作者(Author): 陈洋,范荣双,徐启恒,王竞雪,王文玮
DOI: 10.16251/j.cnki.1009-2307.2018.11.023
参考文献(References):
- [1] LALIBERTE A S,RANGO A,HAVSTAD K M,et al.Object-oriented image analysis for mapping shrub encroachment from 1937to 2003in southern New Mexico[J].Remote Sensing of Environment,2004,93(1):198-210.
- [2] BAATZ M,SCHAPE A.Object-oriented and multiscale image analysis in semantic networks[C]∥The2nd International Symposium on Operationalization of Remote Sensing.[S.l.]:ITC,1999.
- [3] DRAGUT L,BLASCHKE T.Automated classification of landform elements using object-based image analysis[J].Geomorphology,2006,81(3/4):330-344.
- [4] LANTU EJOUL C.Son application aux mesures topologies DES mosaiques[D].[S.l.]:School of Mines,1987.
- [5]陈洋,范荣双,王竞雪,等.结合相位一致和分水岭变换的高分辨率影像分割方法[J].激光与光电子学进展,2017,54(9):092803.(CHEN Yang,FAN Rongshuang,WANG Jingxue,et al.Segmentation of high resolution remotely sensed Imagery combining phase consistency with watershed transformations[J].Laser&Optoelectronics Progress,2017,54(9):092803.)
- [6]刘建华,毛政元.高空间分辨率遥感影像分割方法研究综述[J].遥感信息,2009(6):90-101.(LIU Jianhua,MAO Zhengyuan.A survey on segmentation techniques and application strategy of high spatial resolution remote sensing imagery[J].Remote Sensing Information,2009(6):90-101.)
- [7] LIU Jing,LI Peijun.A high resolution image segmentation method by combined structural and spectral characteristics[J].Acta Geodaetica et Cartographica Sinica,2014,43(5):466-473.
- [8]陈杰,邓敏,肖鹏峰,等.利用小波变换的高分辨率多光谱遥感图像多尺度分水岭分割[J].遥感学报,2011,15(5),908-926.(CHEN Jie,DENG Min,XIAO Pengfeng,et al.Multi-scale watershed segmentation of highresolution multi-spectral remote sensing image using wavelet transform[J].Journal of Remote Sensing,2011,15(5),908-926.)
- [9]刘纯,洪亮,陈杰,等.融合像素一多尺度区域特征的高分辨率遥感影像分类算法[J].遥感学报,2015,19(2):228-239.(LIU Chun,HONG Liang,CHEN Jie,et al.Fusion of pixel-based and multi-scale region-based features for the classification of high-resolution remote sensing image[J].Journal of Remote Sensing,2015,19(2):228-239.)
- [10]江怡,梅小明,邓敏,等.一种结合形态滤波和标记分水岭变换的遥感图像分割方法[J].地理与地理信息科学,2013,29(2):17-21.(JIANG Yi,MEI Xiaoming,DENG Min,et al.Segmentation of remote sensing imagery combined with morphological filtering and marked watershed transformation[J].Geography and Geo-Information Science,2013,29(2):17-21.)
- [11]LIU Y,BIAN L,MENG Y H,et al.Discrepancy measures for selecting optimal combination of parameter values in object-based image analysis[J].ISPRS Journal of Photogrammetry and Remote Sensing,2012,68(2):144-156.
- [12]FAUVEL M,BENEDIKTSSON JA,CHANUSSOT J,et al.Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles[J].IEEE Transactions on Geoscience and Remote Sensing,2008,46(11):3804-3814.
- [13]KOVESI P.Image features from phase congruency[J].Journal of Computer Vision Research,1999,1(1):115-116.
- [14]陈洋,范荣双,王竞雪,等.结合MNF变换和卷积神经网络的高分辨率影像分类[J].激光与光电子学进展,2017,54(10):102801.(CHEN Yang,FAN Rongshuang,WANG Jingxue,et al.High resolution image classification combined with MNF transform and convolution neural network[J].Laser&Optoelectronics Progress,2017,54(10):102801.)
- [15]VAPNIK V N.Statistical learning theory[M].New York:Wiley,1998.
- [16]FOODY G M,MATHUR A.The use of small training sets containing mixed pixels for accurate hard image classification:training on mixed spectral responses for classification by a SVM[J].Remote Sensing of Environment,2006,103(2):179-189.